Abstract:
The present invention discloses a low-orbit satellite-borne image-spectrum associated detection method and payload. The method includes: (1) detecting and tracking moving targets and dynamic phenomena based on a pixel offset compensation method; and (2) performing multi-dimensional characteristic analysis on infrared spectra of the moving targets and the dynamic phenomena, to identify the moving targets and the dynamic phenomena. The payload includes a two-dimensional servo turntable, an infrared reflector, a multispectral infrared optical system, an infrared imaging unit, a broadband infrared spectrum measuring unit, a data processing unit and a control unit. The present invention can achieve coaxiality of an infrared imaging optical path and a short/medium/long wave infrared spectrum measuring optical path, detect infrared image information and infrared spectra of moving targets and dynamic phenomena simultaneously and realize automatic detection, tracking, spectrum measurement and identification of multiple moving targets and dynamic phenomena in a scene, and has high identification efficiency and high tracking and positioning accuracy.
Abstract:
A master control system for a remote-sensing satellite image processing device, the system including: a master control management module, a first FPGA module, and a second FPGA module. The master control management module is in connection and communication with the first FPGA module, the second FPGA module, and a housekeeping computer. The first FPGA module is in connection and communication with the second FPGA module and a remote-sensing satellite image processing device. The master control management module is adapted to perform assignment of tasks. The first FPGA module is adapted to communicate with a processor in the satellite image processing device, monitor an operation state of the satellite image processing device, send the operation state information to the master control management module, receive a task assignment command issued by the master control management module, and transmit the task assignment command to the satellite image processing device.
Abstract:
A method of measuring infrared spectral characteristics of a moving target, the method including: establishing a multi-dimensional and multi-scale model with infrared spectral features of an object-space target, and extracting an object-space region of interest measurement model; performing target detection on an actually measured infrared image, and identifying position information for each ROI of a target; tracking the target, to obtain the target's pixel differences between two frames, as well as a moving direction of the target, and performing motion compensation for the target; and scanning the target, and after successfully capturing an image of the target being tracked, controlling an inner framework to point to each target of interest, and according to moving-direction information of the target, performing N-pixel-size motion in a direction shifted by 90° with respect to the moving direction, and activating a spectrum measuring module.
Abstract:
A method of attitude estimation of a spotted target. The method includes an offline training and an online estimation. The offline training includes establishing a three-dimensional geometric model of a target, performing region division according to the structure of the target, establishing an object-space temperature distribution model for each region of the target, establishing an infrared radiation transmission model of an intra-atmospheric target in six attitudes in observation by a detection system, constructing an image-space radiant energy model of the target in the six attitudes using the object-space temperature distribution model and the infrared radiation transmission model, and performing simulation calculation to obtain an infrared spectral curve of the spotted target regarding wavelength versus image-space-radiant-energy-of-target, so as to establish a mapping database regarding target-attitude versus spectrum.
Abstract:
The present invention discloses a moving platform infrared image-spectrum associated detection system, including an optical hood, a broadband optical system, a two-dimensional servo system, an infrared optical fiber, a Fourier interference spectrum module, an image-spectrum associated detection processing module, a power supply module, and a display module. Incident light enters from the optical hood to the broadband optical system, and is split by a spectroscope. Transmitted light is focused by a long-wave imaging lens group on an infrared detector for imaging. Reflected light is focused by a broadband spectrum lens group to an optical fiber coupler, enters the Fourier interference spectrum module through the infrared optical fiber to form an interference pattern, and undergoes Fourier transform to obtain spectral data. The image-spectrum associated detection processing module effectively merges infrared imaging and broadband spectral data, and the two-dimensional servo system is used to control a center orientation of the broadband optical system, thereby implementing target detection, tracking and spectrum measurement in a moving platform condition. The present invention can effectively isolate the system from disturbance of the moving platform, has the capability of simultaneously performing scene imaging, local area spectrum measurement, and multi-target tracking spectrum measurement, has a high speed and an adequate data amount, and has a broad application prospect.