Abstract:
An aerothermal-radiation correction method, including: using a Gaussian surface to approximate a thermal radiation noise, performing a Fourier transform on the Gaussian surface so as to obtain a centralized spectrum of the thermal radiation noise, constructing a filter function H based on the centralized spectrum of the thermal radiation noise; performing a Fourier transform on the aerothermal-radiation degraded image f so as to obtain a centralized spectrum F, taking dot product of F and H to obtain a filtered spectrum G; and performing an inverse Fourier transform on filtered spectrum G to obtain a modulus, and acquire a corrected image. The method effectively removes background noise generated by aerothermal radiation, greatly improves image quality and image signal-to-noise ratio. The method features reduced computational complexity and a shorter operation time, and is suited for real-time processing.
Abstract:
A zonal underground structure detection method based on sun shadow compensation is provided, which belongs to the crossing field of remote sensing technology, physical geography and pattern recognition, and is used to carry out compensation processing after a shadow is detected, to improve the identification rate of zonal underground structure detection and reduce the false alarm rate. The present invention comprises steps of acquiring DEM terrain data of a designated area, acquiring an image shadow position by using DEM, a solar altitude angle and a solar azimuth angle, processing and compensating a shadow area, and detecting a zonal underground structure after the shadow area is corrected. In the present invention, the acquired DEM terrain data is used to detect the shadow in the designated area; and the detected shadow area is processed and compensated, to reduce influence of the shadow area on zonal underground structure detection; finally, the zonal underground structure is detected by using a remote sensing image after shadow compensation, so that the accuracy of zonal underground structure detection is improved and the false alarm rate is reduced compared with zonal underground structure detection using a remote sensing image without shadow compensation processing.
Abstract:
The present invention discloses a low-orbit satellite-borne image-spectrum associated detection method and payload. The method includes: (1) detecting and tracking moving targets and dynamic phenomena based on a pixel offset compensation method; and (2) performing multi-dimensional characteristic analysis on infrared spectra of the moving targets and the dynamic phenomena, to identify the moving targets and the dynamic phenomena. The payload includes a two-dimensional servo turntable, an infrared reflector, a multispectral infrared optical system, an infrared imaging unit, a broadband infrared spectrum measuring unit, a data processing unit and a control unit. The present invention can achieve coaxiality of an infrared imaging optical path and a short/medium/long wave infrared spectrum measuring optical path, detect infrared image information and infrared spectra of moving targets and dynamic phenomena simultaneously and realize automatic detection, tracking, spectrum measurement and identification of multiple moving targets and dynamic phenomena in a scene, and has high identification efficiency and high tracking and positioning accuracy.
Abstract:
An infrared imaging detection and positioning method for an underground building in a planar land surface environment comprises: obtaining an original infrared image g0 formed after stratum modulation is performed on an underground building, and determining a local infrared image g of a general position of the underground building in the original infrared image g0; setting an iteration termination condition, and setting an initial value h0 of a Gaussian thermal diffusion function; using the local infrared image g as an initial target image f0, and performing iteration solution of a thermal expansion function hn and a target image fn by using a maximum likelihood estimation algorithm according to the initial value h0 of the Gaussian thermal diffusion function; and determining whether the iteration termination condition is met, if the iteration termination condition is met, using the target image fn obtained by means of iteration solution this time as a final target image f; and if the iteration termination condition is not met, continuing to perform iteration calculation. In the method, by performing demodulation processing on the infrared image formed after stratum modulation is performed on the underground building, the display of the infrared image of the original underground building is clearer, and the real structure of the underground building can be inverted.
Abstract:
A method for separating and estimating multiple motion parameters in an X-ray angiogram image. The method includes: determining a cardiac motion signal cycle and a variation frame sequence of translational motion according to an angiogram image sequence, tracing structure feature points of vessels in the angiogram image sequence whereby obtaining a motion sequence, processing the motion sequence via multivariable optimization and Fourier frequency-domain filtering, separating an optimum translational motion curve, a cardiac motion curve, a respiratory motion curve and a high-frequency motion curve according to the variation frame sequence of translational motion, a cycle of the cardiac motion signal, a range of a respiratory motion signal cycle, and a range of a high-frequency motion signal cycle.
Abstract:
Disclosed is an inverse estimation-based radius calculation method and system for ferromagnetic target detection. The calculation method includes a data acquisition step and a ferromagnetic target detection radius calculation step. Distrubance of a scale model to power frequency electromagnetic waves is used to inversely estimate a corresponding ferromagnetic target detection radius. Inverse estimation is performed separately for an air layer and a sea water layer according to test results of multiple scale model tests and in consideration of both a stationary state and a motion state of the scale model, so as to acquire a ferromagnetic target detection radius calculation formula. Weights of factors such as mass, speed, depth, and height are great in inverse estimation, so that inverse estimation precision is improved. The majority of background noise interference can be screened out of the power frequency electromagnetic waves.
Abstract:
An aerodynamic optical effect correction and identification integrated real-time processing system, comprising an FPGA module, a multi-core main processor DSP, a plurality of auxiliary processors ASICs and an infrared image non-uniformity correction system-on-chip (SoC). By means of the system, full-image thermal radiation correction, denoising, transmission effect correction and target detection processes of an aerodynamic optical effect degradation image are achieved. Correspondingly, provided is the corresponding method. The system effectively solves the problem of aerodynamic optical effect and the problem of the requirement for a short detection time interval of the processor in an aircraft flying at a high speed; due to the adoption of the independently researched and developed ASIC, the real-time property of the whole system is greatly improved; all tasks are rationally distributed and a multi-core parallel mode is adopted, so the image processing time is greatly shortened; and meanwhile, the FPGA module connects all units to form a closed-loop system, so that the system stability is further improved.
Abstract:
The present invention relates to a multiband common-optical-path image-spectrum associated remote sensing measurement system and method. The system includes an infrared window (1), a two-dimensional rotating mirror (2), a planar reflector (3), a reflective multiband infrared lens (4), a Fourier interference spectrum module (5), an image-spectrum associated processing module (6), a power supply module (7), a refrigerating module (8), and a display module (9); the incident light enters from the infrared window (1), is reflected by the two-dimensional rotating mirror (2), and then is reflected by the planar reflector (3) to the reflective multiband infrared lens (4) and then is split by a spectroscope (42); the transmitted light is focused by means of a convergent lens and is imaged on an infrared detector (43); the reflected light is focused on an infrared optical fiber coupler (44) and enters the Fourier interference spectrum module (5) through an infrared optical fiber to form an interference pattern, and further, spectrum data is obtained through Fourier transformation; the image-spectrum associated processing module (6) effectively combines broadband spectrum imaging and non-imaging spectrum data, and controls the two-dimensional rotating mirror (2) to point to a target, thereby implementing intelligent remote sensing measurement. The present invention has capabilities of performing local scene region spectrum measurement and multi-target tracking spectrum measurement, has high speed, an appropriate data amount, and low cost.
Abstract:
The invention discloses a direction-adaptive image deblurring method, comprising steps of: (1) defining a minimum cost function for deblurring an image by direction-adaptive total variation regularization; (2) converting the unconstrained minimization problem in step (1) to a constrained problem by auxiliary variables d1=Hu, d2=∇xu and d3=∇yu; (3) obtaining a new minimum cost function from the constrained problem in step (2) by introducing penalty terms; and (4) converting the minimization problem in step (3) to an alternating minimization problem about u, d1, d2 and d3, where a minimum of a variable is calculated as other variables are determined, and obtaining a deblurred image by solving the alternating minimization problem by an alternative and iterative minimization process. Compared with the prior art, the present invention obtains a new direction-adaptive cost function by introducing local direction information into a maximum a posteriori algorithm, solves a problem of edges of an image restored by traditional TV regularization terms being blurred, and can restore images of complex blurring types or images with abundant textures.
Abstract:
The disclosure discloses a mobile photoelectric detection and identification system for low, slow and small targets. The optical detection subsystem and the photoelectric parallel processing and identification subsystem are arranged on the servo subsystem, and the servo subsystem is carried on an installation platform of a vehicle. The optical detection subsystem is configured to collect multi-wavelength band optical information from the target and the background. The co-processing module of various wavelength bands is configured to perform single-frame detection and identification of the target from the image information of the corresponding wavelength band. The information processing main control module is configured to use JPEG image compression, track association and multi-frame combining methods to perform a multi-frame detection and identification on the target. The servo subsystem is configured to complete target tracking according to the multi-frame detection and identification results.