Abstract:
The present invention relates to a multiband common-optical-path image-spectrum associated remote sensing measurement system and method. The system includes an infrared window (1), a two-dimensional rotating mirror (2), a planar reflector (3), a reflective multiband infrared lens (4), a Fourier interference spectrum module (5), an image-spectrum associated processing module (6), a power supply module (7), a refrigerating module (8), and a display module (9); the incident light enters from the infrared window (1), is reflected by the two-dimensional rotating mirror (2), and then is reflected by the planar reflector (3) to the reflective multiband infrared lens (4) and then is split by a spectroscope (42); the transmitted light is focused by means of a convergent lens and is imaged on an infrared detector (43); the reflected light is focused on an infrared optical fiber coupler (44) and enters the Fourier interference spectrum module (5) through an infrared optical fiber to form an interference pattern, and further, spectrum data is obtained through Fourier transformation; the image-spectrum associated processing module (6) effectively combines broadband spectrum imaging and non-imaging spectrum data, and controls the two-dimensional rotating mirror (2) to point to a target, thereby implementing intelligent remote sensing measurement. The present invention has capabilities of performing local scene region spectrum measurement and multi-target tracking spectrum measurement, has high speed, an appropriate data amount, and low cost.
Abstract:
The present invention discloses an infrared image-spectrum associated intelligent detection method and apparatus, including: first searching for targets in a field of view (FOV), and performing image-spectrum associated intelligent identification sequentially on the searched targets, that is, first performing infrared image target identification on each target, and if a detection identification rate is greater than a set threshold, outputting an identification result and storing target image data; otherwise, acquiring an infrared spectrum of the target, and performing target identification based on infrared spectrum features. The present invention further discloses an apparatus for performing target detection using the above method, and the apparatus mainly includes a two-dimensional scanning mirror, a multiband infrared optical module, a long-wave infrared (LWIR) imaging unit, a broadband infrared spectrum measuring unit, and a processing and control unit. The method and apparatus of the present invention are improvements and enhancements of the conventional infrared target detection method and device, and may be used for infrared image detection, infrared image-spectrum associated detection of the target and infrared spectrum collection of the target. Compared with the conventional infrared detection device, the present invention has a higher cost performance, and can significantly improve the detection identification rate of the target.
Abstract:
The present invention discloses a moving platform infrared image-spectrum associated detection system, including an optical hood, a broadband optical system, a two-dimensional servo system, an infrared optical fiber, a Fourier interference spectrum module, an image-spectrum associated detection processing module, a power supply module, and a display module. Incident light enters from the optical hood to the broadband optical system, and is split by a spectroscope. Transmitted light is focused by a long-wave imaging lens group on an infrared detector for imaging. Reflected light is focused by a broadband spectrum lens group to an optical fiber coupler, enters the Fourier interference spectrum module through the infrared optical fiber to form an interference pattern, and undergoes Fourier transform to obtain spectral data. The image-spectrum associated detection processing module effectively merges infrared imaging and broadband spectral data, and the two-dimensional servo system is used to control a center orientation of the broadband optical system, thereby implementing target detection, tracking and spectrum measurement in a moving platform condition. The present invention can effectively isolate the system from disturbance of the moving platform, has the capability of simultaneously performing scene imaging, local area spectrum measurement, and multi-target tracking spectrum measurement, has a high speed and an adequate data amount, and has a broad application prospect.
Abstract:
A method for detecting spectral characteristics of multi-band moving objects. The method includes: 1) dividing a full field of view into several subfields of view, and scanning and extracting suspected objects in each subfield one by one; 2) correlating interrelated suspected objects in adjacent subfields via coordinates to determine objects of interest that exist in the full field of view; 3) calculating the speeds of the objects of interest; 4) calculating average speed of all of the objects of interest and classifying the objects of interest according to their average speed; 5) compensating and rectifying the objective spectrum obtained from calculation; and 6) matching the compensated and rectified objective spectrum with a spectrum fingerprint database whereby realizing recognition of the multi-band moving objects.