Abstract:
An oscillator circuit for providing an output clock signal is described. The oscillator circuit comprising a voltage reference, a first current source, first capacitor, first capacitor switch, second current source, second capacitor, second capacitor switch, first comparator, second comparator and flip-flop. The first comparator comprises a first chopper-stabilized comparator switchable between a compare phase and a zeroing phase in dependence on the output clock signal and arranged to operate in the compare phase in a first half-phase of the output clock signal to provide a first comparator output from comparing the first capacitor voltage to the reference voltage and in the zeroing phase in the second half-phase. The second comparator comprises a second chopper-stabilized comparator switchable between a respective compare phase and a respective zeroing phase in dependence on the output clock signal and arranged to operate in its compare phase in the second half-phase to obtain a second comparator output from comparing the second capacitor voltage to the reference voltage and in its zeroing phase in the first half-phase.
Abstract:
A signalling circuit for a signal channel of a communication network comprises a communication network terminal connectable to the signal channel and to a voltage supply; an input terminal connectable to receive a transmit signal; a driver device comprising a first driver terminal connected to the communication network terminal, a second driver terminal connected to ground, and a driver control terminal connected to the input terminal; wherein the driver device is arranged to connect the communication network terminal to ground in response to a transition from a low to a high voltage driver control signal state of a driver control signal received at the driver control terminal. And the signalling circuit comprises a feedback circuit connected to the first driver terminal and the driver control terminal and comprising a capacitive device; and a pull-down device arranged to connect the driver control terminal to ground after a predefined delay after a transition of the transmit signal from a low to a high voltage transmit signal state.
Abstract:
An oscillator circuit for providing an output clock signal is described. The oscillator circuit comprising a voltage reference, a first current source, first capacitor, first capacitor switch, second current source, second capacitor, second capacitor switch, first comparator, second comparator and flip-flop. The first comparator comprises a first chopper-stabilized comparator switchable between a compare phase and a zeroing phase in dependence on the output clock signal and arranged to operate in the compare phase in a first half-phase of the output clock signal to provide a first comparator output from comparing the first capacitor voltage to the reference voltage and in the zeroing phase in the second half-phase. The second comparator comprises a second chopper-stabilized comparator switchable between a respective compare phase and a respective zeroing phase in dependence on the output clock signal and arranged to operate in its compare phase in the second half-phase to obtain a second comparator output from comparing the second capacitor voltage to the reference voltage and in its zeroing phase in the first half-phase.
Abstract:
A signalling circuit for a signal channel of a communication network comprises a communication network terminal connectable to the signal channel and to a voltage supply; an input terminal connectable to receive a transmit signal; a driver device comprising a first driver terminal connected to the communication network terminal, a second driver terminal connected to ground, and a driver control terminal connected to the input terminal; wherein the driver device is arranged to connect the communication network terminal to ground in response to a transition from a low to a high voltage driver control signal state of a driver control signal received at the driver control terminal. And the signalling circuit comprises a feedback circuit connected to the first driver terminal and the driver control terminal and comprising a capacitive device; and a pull-down device arranged to connect the driver control terminal to ground after a predefined delay after a transition of the transmit signal from a low to a high voltage transmit signal state.