摘要:
A stereoscopic image display device includes a display panel and an optical lens assembly. The display panel includes a plurality of pixels. The display panel temporally divides M view images corresponding to M viewing spaces to display the temporally divided image on a display panel. ‘M’ is a natural number of no less than two. The optical lens assembly converts the view image displayed on the display panel into N stereoscopic images in which directions of the view images are different from each other to emit the converted view image toward a viewing space corresponding to the view image displayed on the display panel. ‘N’ is a natural number no less than two.
摘要:
A stereoscopic image display includes; a display panel including a pixel including; a first subpixel, and a second subpixel disposed adjacent to the first subpixel, wherein the first subpixel and the second subpixel are adjacent along a subpixel border line which is a virtual line disposed at an interface between the first subpixel and the second subpixel, and a lenticular lens disposed on the display panel, the lenticular lens having a lens axis, in which the lens axis and a subpixel border line may intersect each other, or a portion of the subpixel border line may be substantially parallel with the lens axis.
摘要:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
摘要:
A stereoscopic image display device includes a display panel, a temporal division plate and a lenticular lens. The display panel includes a gate line, a data line, and a unit pixel of a horizontal pixel structure in which a long side is parallel with the first direction and a short side is parallel with the second direction. The display panel displays a 2D image based on an image control signal. The temporal division plate includes a plurality of shutters disposed on the display panel extending in the second direction. The temporal division plate opens and closes m shutters corresponding to each unit pixel, in a sequence, ‘m’ being a natural number no less than 2). The lenticular lens is disposed on the temporal division plate to convert the 2D image passing the temporal division plate into a 3D image.
摘要:
A liquid crystal lens panel includes a first substrate, a second substrate, a liquid crystal layer and a light-blocking member. The first substrate includes a plurality of individual electrodes. The individual electrode receives a voltage to have a light path length distribution of a Fresnel lens shape. The second substrate includes a common electrode opposition the individual electrodes. The liquid crystal layer is disposed between the first and second substrates. The light-blocking member is disposed on an area in correspondence with the individual electrode in which a voltage discontinuously varied is applied thereto. Thus, a liquid crystal lens panel of a Fresnel lens type is realized to decrease a liquid crystal cell gap, so that a process efficiency of the liquid crystal lens panel may be enhanced and a manufacturing cost of the liquid crystal lens panel may be reduced.
摘要:
A display device includes a display panel on which a plurality of pixels are arranged in a matrix in a first direction and in a second direction intersecting the first direction, and a lenticular sheet which is disposed above the display panel and includes a plurality of polygonal prism lenses that are arranged in the second direction. Each of the polygonal prism lenses extends in a third direction intersecting the second direction, and includes a plurality of flat surfaces or curved surfaces.
摘要:
A method for displaying a multi-viewpoint image is capable of reducing display defects, and a display apparatus to perform the method includes a display part and a driving control part. The driving control part provides the display part with a plurality of multi-viewpoint images signals. The driving control part sequentially provides the display part with a first viewpoint image to a last viewpoint image and provides the display part with a compensation viewpoint image signal that replaces the last viewpoint image signal of a frame.
摘要:
An array substrate includes first and second gate lines, a data line, a pixel electrode, a domain electrode, first, second and third switching elements, and a voltage-changing part. The domain-dividing electrode divides the first and second pixel parts into a plurality of areas. The first, second and third switching elements are controlled by a first gate signal applied from the first gate line. The first, second and third switching elements apply a data signal received from the data line to the first and second pixel parts and the domain-dividing electrode, respectively. The voltage-changing part is controlled by a second gate signal applied from the second gate line. The voltage-changing part increases a voltage level of the domain-dividing electrode and decreases a voltage level of the second pixel part.
摘要:
A display device includes a display panel on which a plurality of pixels are arranged in a matrix, and a lenticular sheet which is disposed above the display panel and includes a plurality of prism lenses disposed on the lenticular sheet. Each of the plurality of prism lenses includes a first surface, a second surface and a third surface. Each surface of the prism lens is disposed extending in a first direction substantially parallel to a longitudinal direction of the prism lenses, and arranged substantially parallel with each other.
摘要:
A liquid crystal display includes first and second thin film transistors, a pixel electrode including a first cutout and an inclination direction determining member and connected to the first thin film transistor, a direction controlling electrode connected to the second thin film transistor, a first storage electrode overlapping with the pixel electrode and the direction controlling electrode and applied with a first storage electrode signal having a first voltage, and second storage electrode overlapping with the direction controlling electrode to receive a second storage electrode signal having a second voltage that periodically changes.