摘要:
Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed sintered polycrystalline aggregates. The free-standing cutting element can have a brazeable layer and the compact can be backed with, for example, cemented tungsten carbide. Free-standing cutting elements can be thermally stable up to 1,200.degree. C. Backed compacts can be thermally stable up to 1,100.degree. C.
摘要:
Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed, sintered polycrystalline aggregates. The free-standing cutting element can have a brazeable layer and the compact can be backed with, for example, cemented tungsten carbide. Free-standing cutting elements can be thermally stable up to 1,200.degree. C. Backed compacts can be thermally stable up to 1,100.degree. C.
摘要:
An improved temperature stable synthetic polycrystalline diamond (PCD) product includes at least one temperature stable PCD integrally and chemically bonded to a matrix carrier support through a carbide forming layer which is of a thickness of at least about 1 micron, the layer on at least one surface of the PCD is in turn bonded to the matrix carrier. A wide variety of shapes, sizes and configurations of such products is achieved through relatively low temperature and relatively low pressure processing. Various products of various geometries are described as well as the details of the processing to achieve chemical bonding of the PCD elements in a variety of support matrix carrier materials to form a unitary structure having a temperature stability up to about 1,200 degrees C.
摘要:
An improved temperature stable synthetic polycrystalline diamond (PCD) product includes at least one temperature stable PCD integrally and chemically bonded to a matrix carrier support through a carbide forming layer which is of a thickness of at least about 1 micron, the layer on at least one surface of the PCD is in turn bonded to the matrix carrier. A wide variety of shapes, sizes and configurations of such products is achieved through relatively low temperature and relatively low pressure processing. Various products of various geometries are described as well as the details of the processing to achieve chemical bonding of the PCD elements in a variety of support matrix carrier materials to form a unitary structure having a temperature stability up to about 1,200 degrees C.
摘要:
A diamond cutter for use in a drill bit having a geometric size and shape normally characterized by unleached diamond product, such as STRATAPAX diamond cutters, can be fabricated by assembling a plurality of prefabricated leached polycrystalline diamond (PCD) elements in an array in a cutting slug. A cutting slug is formed of matrix material which in one embodiment is impregnated with diamond grit. The cutting face of the cutting slug is characterized by exposing at least one surface of each of the PCD elements disposed therein. The diamonds may be set within the cutting slug either in a compact touching array or in a spaced-apart relationship. More than one type of array may also be employed within a single cutting slug. The PCD elements can assume a variety of polyhedral shapes such as triangular prismatic elements, rectangular elements, hexagonal elements and the like. The plurality of diamond elements and the cutting slug are fabricated using hot pressing or infiltration techniques.
摘要:
A diamond cutter for use in a drill bit having a geometric size and shape normally characterized by unleached diamond product, such as STRATAPAX diamond cutters, can be fabricated by assembling a plurality of prefabricated leached polycrystalline diamond (PCD) elements in an array in a cutting slug. A cutting slug is formed of matrix material which in one embodiment is impregnated with diamond grit. The cutting face of the cutting slug is characterized by exposing at least one surface of each of the PCD elements disposed therein. The diamonds may be set within the cutting slug either in a compact touching array or in a spaced-apart relationship. More than one type of array may also be employed within a single cutting slug. The PCD elements can assume a variety of polyhedral shapes such as triangular prismatic elements, rectangular elements, hexagonal elements and the like. The plurality of diamond elements and the cutting slug are fabricated using hot pressing or infiltration techniques.