Abstract:
The invention provides a float trowel blade attachment for cement floor finishers comprising a rectangular section of sheet metal having a top surface and a bottom surface and having its edges optionally bent upwardly, means for providing to the top surface a three-sided rearwardly open pocket on the back of the section adjacent the leading edge thereof adapted to partially receive a finish trowel blade of the finisher, a spring clip secured to the top surface or the pocket-forming means and extending rearwardly therefrom so as to be engageable with the finish trowel blade to retain the section thereon, and wherein said rectangular sheet metal has attached to its bottom surface using an adhesive or mechanical attachment material interlayer, a composite rigid abrasive element bonded to a resilient backing.
Abstract:
A polycrystalline diamond construction may be made by subjecting diamond grains to a high pressure/high temperature condition in the presence of a catalyst material to form a polycrystalline diamond material comprising a matrix phase of bonded together diamond grains and interstitial regions disposed between the diamond grains including the catalyst material, treating the polycrystalline diamond material to remove the catalyst material therefrom to form a diamond body that is substantially free of the catalyst material, and attaching a substrate to the diamond body with a layer of eruption minimization material having a thickness from about 2 μm to 8 μm on at least one attachment interface surface of the substrate and/or diamond body.
Abstract:
In accordance with some embodiments, an abrasive article is provided. The abrasive article includes a carrier. The abrasive article further includes a matrix layer on the carrier. The matrix layer includes a copper-titanium-tin alloy, wherein the copper-titanium-tin alloy includes from about 70 wt % to about 90 wt % of copper, from about 5 wt % to about 15 wt % of titanium, and from about 5 wt % to about 15 wt % of tin. The abrasive article also includes at least one abrasive particle partially embedded in the matrix layer. The abrasive particle includes carbon.
Abstract:
A metal bonded grinding stone is manufactured by heating and pressurizing a material including abrasive grains, a cobalt, a tungsten disulfide and a copper tin alloy to obtain a sintered product, and rapid-cooling the sintered product.
Abstract:
An abrasive article can include an abrasive segment. The abrasive segment can have a body that includes a plurality of abrasive aggregates. In addition, the abrasive aggregates can include a plurality of silicon carbide particles bonded together by a binder material phase. The abrasive aggregates can be contained within a bond material that includes a magnesia-based cement. In an embodiment, the binder material phase can include a vitreous phase material and a crystalline phase material. In particular instances, the binder material phase can include a certain porosity. In another embodiment, the abrasive segment can be formed from a mixture of abrasive aggregates including silicon carbide and a magnesia-based bond material.
Abstract:
An abrasive article includes a plurality of abrasive particles securely affixed to a substrate with a corrosion resistant matrix material. The matrix material includes a sintered corrosion resistant powder and a brazing alloy. The brazing alloy includes an element which reacts with and forms a chemical bond with the abrasive particles, thereby securely holding the abrasive particles in place. A method of forming the abrasive article includes arranging the abrasive particles in the matrix material, and applying sufficient heat and pressure to the mixture of abrasive particles and matrix material to cause the corrosion resistant powder to sinter, the brazing alloy to flow around, react with, and form chemical bonds with the abrasive particles, and allow the brazing alloy to flow through the interstices of the sintered corrosion resistant powder and form an inter-metallic compound therewith.
Abstract:
An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a growth precursor of a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. The growth precursor can have a layer of adhesive over at least a portion thereof. A plurality of crystalline seeds can be placed in a predetermined pattern on the layer of adhesive. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Abstract:
An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method includes forming a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. A plurality of crystalline seeds is placed in a predetermined pattern in the mixture or one of the layers to form a growth precursor. The growth precursor is maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Abstract:
An improved method for controlling nucleation sites during superabrasive particle synthesis can provide high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a particulate crystal growth layer by mixing a raw material and a catalyst material and then placing the crystalline seeds in a predetermined pattern in the growth layer. Preferably, seeds can be substantially surrounded by catalyst material. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. The crystalline seeds can be placed in a predetermined pattern using a template, a transfer sheet, vacuum chuck or similar techniques. The superabrasive particles grown using the described methods typically have a high yield of high quality industrial particles and a narrow distribution of particle sizes.
Abstract:
An improved method for controlling nucleation sites during superabrasive particle synthesis can provide high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a raw material layer, forming a particulate catalyst layer adjacent the raw material layer, and placing crystalline seeds in a predetermined pattern at least partially in the catalyst layer or raw material layer to form a growth precursor. Alternatively, the raw material and catalyst material can be mixed to form a particulate crystal growth layer and then placing the crystalline seeds in a predetermined pattern in the growth layer. Preferably, seeds can be substantially surrounded by catalyst material. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. The crystalline seeds can be placed in a predetermined pattern using a template, a transfer sheet, vacuum chuck or similar techniques. The superabrasive particles grown using the described methods typically have a high yield of high quality industrial particles and a narrow distribution of particle sizes.