Abstract:
An oil supply device for an electric vehicle powertrain apparatus, includes an electric oil pump, a motor lubrication flow path connected to the electric oil pump and provided to supply oil from the electric oil pump to a bearing of a motor, a motor cooling flow path branched from the motor lubrication flow path to supply oil for cooling the motor from the electric oil pump, and a cooling control valve apparatus provided in the motor cooling flow path to control oil supplied to the motor through the motor cooling flow path according to an operating state of the electric oil pump.
Abstract:
A method for controlling a vehicle including a continuously variable transmission includes determining, by a controller, whether a speed difference between a speed of a vehicle according to revolutions per minute (RPM) of a driving wheel of the vehicle and a speed of the vehicle according to revolutions per minute (RPM) of a towed wheel of the vehicle is equal to or greater than a speed reference value and reducing, by the controller, torque of an engine providing a driving force to a driving pulley of the continuously variable transmission when the difference in vehicle speed is equal to or greater than the speed reference value.
Abstract:
A transmission for an electric vehicle may include a first planetary gear set; a first motor configured to input power to a first rotation element of the first planetary gear set; a differential configured to receive power output from a second rotation element of the first planetary gear set; a second motor configured to selectively provide power to a third rotation element of the first planetary gear set; a second planetary gear set including a first rotation element which is directly connected to the differential, and a second rotation element which is configured to selectively receive power from the second motor; and a third planetary gear set including a third rotation element which is directly connected to a third rotation element of the second planetary gear set, a second rotation element which is fixed, and a first rotation element which is directly connected to a selected output shaft of the differential.
Abstract:
A power train apparatus for an electric vehicle may include a planetary gear set including three rotation elements having a first rotation element, a second rotation element and a third rotation element, wherein the first rotation element is fixedly connected to a first shaft and the second rotation element is fixedly connected to a second shaft; a motor; a first transmission device mounted to selectively transfer power of the motor to the first shaft in a plurality of gear ratios; and a second transmission device provided to selectively transfer the power of the motor to the first shaft or the second shaft.
Abstract:
A power transmission apparatus for an electric vehicle including a motor as a power source may include: a compound planetary gear set formed as a combination of first and second planetary gear sets sharing a sun gear and a plurality first pinion gears; a first brake selectively connecting a first ring gear of the first planetary gear set to a transmission housing; and a second brake selectively connecting the shared sun gear of the first and second planetary gear sets to the transmission housing. In particular, a second ring gear of the second planetary gear set is fixedly connected to a rotor of the motor and thus continuously receives a torque of the motor, and the power transmission apparatus outputs a shifted torque through a planet carrier rotatably supporting the plurality of first pinion gears and a plurality of second pinion gears of the first planetary gear set.
Abstract:
A power train for an electric vehicle may include a planetary gear set including three rotation elements having a first rotation element, a second rotation element and a third rotation element, wherein the first rotation element is connected to a first shaft, the second rotation element is connected to a second shaft, and the third rotation element is connected to a third shaft; a first motor mounted to selectively supply power to the first shaft in two or more gear ratios; and a second motor mounted to selectively supply power to the first shaft in two or more gear ratios. The third shaft is configured to be fixed to a transmission housing, and any two of the first shaft, the second shaft, and the third shaft are configured to be coupled to each other.
Abstract:
A transmission for an electric vehicle may include a first planetary gear set; a first motor configured to input power to a first rotation element of the first planetary gear set; a differential configured to receive power output from a second rotation element of the first planetary gear set; a second motor configured to selectively provide power to a third rotation element of the first planetary gear set; a second planetary gear set including a first rotation element which is directly connected to the differential, and a second rotation element which is configured to selectively receive power from the second motor; and a third planetary gear set including a third rotation element which is directly connected to a third rotation element of the second planetary gear set, a second rotation element which is fixed, and a first rotation element which is directly connected to a selected output shaft of the differential.
Abstract:
An automatic-transmission hydraulic pressure supply system includes a low-pressure hydraulic pump supplying low hydraulic pressure to a first low-pressure line, a low-pressure regulator valve recirculating through a first recirculation line a portion of the hydraulic pressure supplied through the first low-pressure line to regulate the hydraulic pressure of the first low-pressure line, and supplying the regulated hydraulic pressure to a low pressure portion through a second low-pressure line, a high-pressure hydraulic pump receiving a portion of the hydraulic pressure of the first low-pressure line, increasing and supplying the increased hydraulic pressure to a high pressure portion through a high-pressure line, and a high-pressure regulator valve recirculating a portion of the hydraulic pressure supplied through the high-pressure line through second and/or third recirculation lines, and supplying the regulated hydraulic pressure to the high pressure portion.
Abstract:
A pump motor control system provides for a low-pressure hydraulic pump and a high-pressure hydraulic pump on one shaft of a pump motor. A method includes detecting information including engine speed, a shift range selected, a rotation speed of the pump motor, and hydraulic pressure in a high-pressure part, controlling the rotation speed of the pump motor to be the same as the engine speed, when engine is turned on and the P range or the N range is selected by the shift lever, generating hydraulic pressure for operating a friction element in the high-pressure part by increasing the rotation speed of the pump motor, when the shift lever is moved to the D range or R range, and keeping the hydraulic pressure in the high-pressure part stable, by controlling the rotation speed of the pump motor in accordance with the hydraulic pressure at the high-pressure part.
Abstract:
A vehicle having a variable hydraulic pump may include a sun gear that receives a torque from a power source through an input shaft, a ring gear of which an interior circumference is with a distance from an exterior circumference of the sun gear, a planetary gear that is disposed between the interior circumference of the ring gear and the exterior circumference of the sun gear, a carrier that connects with an output shaft, a hydraulic pump that pumps oil through the output shaft that is connected to the carrier, and a motor that is disposed outside the ring gear to selectively rotate the ring gear.