Abstract:
A method of preparing scandium metal includes mixing aluminum powder and scandium fluoride powder to form a mixture, heating the mixture in a vacuum environment to react the aluminum powder with the scandium fluoride powder for forming aluminum fluoride gas and scandium metal, and removing the aluminum fluoride gas by evacuation to obtain the scandium metal.
Abstract:
An electrolyte is provided. The electrolyte includes a polymer, a lithium salt, and an organic solvent. The polymer is a polymerization product of a reactive additive and an initiator, wherein the reactive additive includes at least an amide group and at least an epoxy group or ethyl group. A composition for electrolyte and a lithium battery employing the electrolyte are also provided.
Abstract:
A cathode of a lithium ion battery is provided. The cathode of a lithium ion battery includes a collector material. A first electrode layer including a lithium manganese iron phosphate (LMFP) material is disposed on a surface of the collector material. A second electrode layer including an active material is disposed on the first electrode layer. The active material includes lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LCO), Li-rich cathode material, or a combination thereof.
Abstract:
An electronic device, a controlling method of a screen, and a program storage medium thereof are provided. The screen includes a display panel and a touch-sensitive panel. The display panel shows a root window on which all display contents are shown. The controlling method comprises the following steps. A command signal is received. The coordinate system of the screen is transformed with a transformation according to the command signal.
Abstract:
A cathode of a lithium ion battery is provided. The cathode of a lithium ion battery includes a collector material. A first electrode layer including a lithium manganese iron phosphate (LMFP) material is disposed on a surface of the collector material. A second electrode layer including an active material is disposed on the first electrode layer. The active material includes lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LCO), Li-rich cathode material, or a combination thereof.
Abstract:
A battery with a heat-resistant layer is provided. The battery with a heat-resistant layer includes a positive electrode, a negative electrode, a separator, an electrolyte and a heat-resistant layer. The separator is disposed between the positive electrode and the negative electrode. The heat-resistant layer is disposed between at least one of the positive or negative electrodes and the separator, wherein the heat-resistant layer has a tetrapod-shaped surface morphology. The positive electrode, the negative electrode, the separator and the heat-resistant layer are soaked in the electrolyte. A method for manufacturing the heat-resistant layer is also provided.
Abstract:
A user input method includes the following steps. A virtual keyboard layout and a control region are displayed. The virtual keyboard layout includes a plurality of key subgroups each mapped to a respective one of a plurality of regions of the control region. Locations of an object from at least one captured image are extracted to identify a location of a feature point of the object. A target region in which the feature point is located is determined. Keys mapped to the target region are determined. Movements of the object are translated as input data to the user interface system.
Abstract:
A power management method for electro-chemical batteries in low capacity state is provided, including: obtaining battery information based on device hardware, to know in advance the maximum allowable current and maximum allowable power when the battery power is low; by detecting the changes in the voltage versus current, updating BCC curve; using BCC curve as power budget to control the ON/OFF of device function thread; and determining whether the minimum battery capacity and the control restriction are reached, and when the minimum battery capacity and the control restriction are reached, turn off the battery through normal shutdown process; otherwise, return to the step of obtaining battery information.