Abstract:
An organic device including a substrate or a dielectric layer; a photoresist layer formed on the substrate or dielectric layer, wherein the photoresist layer is provided with a plurality of microgrooves having an alignment direction; an organic semiconducting layer having alignment formed on the photoresist layer, wherein the organic semiconducting layer aligns according to the alignment direction of the microgrooves of the photoresist layer; and an electrode.
Abstract:
A wide-viewing angle display device serves as a multi-domain vertical alignment (MVA) mode liquid crystal display (LCD) device or an in-plane switching (IPS) mode liquid crystal display (LCD) device. A plurality of protrusions is formed on the inner surface of the glass substrate, and an electrode array is formed on the tops of the protrusions. Thus, the electrodes are suspended in the liquid crystal cell gap, and a transverse electrical field is generated by the electrodes to drive the liquid crystal molecules.
Abstract:
A method for manufacturing the liquid crystal display, which mainly use a auxiliary substrate with polymeric material containing liquid crystal to proceed a photo polymerization process, and then use a first polymeric material layer to proceed a process with plurality electrode, alignment layer and flanges setting in. A second polymeric material mixture coating on a substrate which has plurality electrode pattern an alignment layer and flanges on it. And then align the auxiliary substrate and the substrate to proceed exposure process and combine both due to phase separation, finally removing the assist substrate.
Abstract:
An organic device including a substrate or a dielectric layer; a photoresist layer formed on the substrate or dielectric layer, wherein the photoresist layer is provided with a plurality of microgrooves having an alignment direction; an organic semiconducting layer having alignment formed on the photoresist layer, wherein the organic semiconducting layer aligns according to the alignment direction of the microgrooves of the photoresist layer; and an electrode.
Abstract:
A plastic liquid crystal display device and a fabrication method thereof. A plastic substrate having a plurality of bumps on at least one surface thereof is integrally molded. A glass transition temperature (Tg) of the plastic substrate is greater than 150null C. A melt flow index (MFI) of the plastic substrate is greater than 2. A conformal reflective film on the plastic substrate with the bumps is formed. An insulating substrate opposite the plastic plate is provided. A transparent electrode is formed on an inner surface of the insulating substrate. A liquid crystal layer is inserted between the plastic substrate and the insulating substrate.
Abstract:
A method of simultaneously fabricating a photospacer and a bump applicable on a substrate with a photoresist layer formed thereon. A photomask is provided with a first mask pattern and a second mask pattern thereon, wherein the first mask pattern for the formation of the bump includes a plurality of light-shielding units constituting a first shape, and the second mask pattern for the formation of the photospacer is composed of a light-shielding pattern with a second shape. The photomask is then applied on the photoresist layer to perform photolithography, thereby fabricating the photospacer and the bump simultaneously. According to the method, only one photolithography step is required to fabricate the photospacer and bump of different thickness, such that yield is increased and cost is lowered.