Abstract:
The disclosure proposes a dynamic beamforming method and related apparatuses using the same method. According one of the exemplary embodiments, the proposed dynamic beamforming method is applicable to a base station and includes not limited to transmitting a first reference signal; transmitting a first configuration message comprising a first oversampling rate of a first dimension and a first oversampling rate of a second dimension; receiving a first information feedback of the first reference signal based on the first oversampling rate of the first dimension and the first oversampling rate of the second dimension in response to transmitting the first configuration message; and transmitting a second configuration message comprising a second oversampling rate of the first dimension and a second oversampling rate of the second dimension after receiving the first information feedback of the first reference signal.
Abstract:
A beam measuring and reporting method adapted for a user equipment for a multibeam wireless communication system is provided. The method includes the following. A beam configuration for a plurality of first candidate beams is received. A channel measurement for each of the first candidate beams is performed in response to receiving the beam configuration. Beam information of at least one selected beam of the first candidate beams is reported in response to receiving the beam configuration.
Abstract:
A beam measuring and reporting method adapted for a user equipment for a multibeam wireless communication system is provided. The method includes the following. A beam configuration for a plurality of first candidate beams is received. A channel measurement for each of the first candidate beams is performed in response to receiving the beam configuration. Beam information of at least one selected beam of the first candidate beams is reported in response to receiving the beam configuration.
Abstract:
Provided is a method of grant-free uplink transmission for a user equipment. The user equipment receives a grant-free configuration parameter. The user equipment receives at least one reference signal. The user equipment performs channel measurement based on the at least one reference signal. The user equipment decides at least one uplink beamforming weight or at least one precoder based on the at least one reference signal. The user equipment performs grant-free uplink transmission based on the decided at least one uplink beamforming weight or the at least one precoder and the grant-free configuration parameter.
Abstract:
Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system, the method including allocating a plurality of reference signals (RSs) for beam indication, selecting one of the plurality of RSs for the receiver, and transmitting information about the selected RS to the receiver, wherein the information includes a reference indication (RI) that indicates the radio resource of the selected RS.
Abstract:
Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system, the method including allocating a plurality of reference signals (RSs) for beam indication, selecting one of the plurality of RSs for the receiver, and transmitting information about the selected RS to the receiver, wherein the information includes a reference indication (RI) that indicates the radio resource of the selected RS.
Abstract:
The disclosure proposes a dynamic beamforming method and related apparatuses using the same method. According one of the exemplary embodiments, the proposed dynamic beamforming method is applicable to a base station and includes not limited to transmitting a first reference signal; transmitting a first configuration message comprising a first oversampling rate of a first dimension and a first oversampling rate of a second dimension; receiving a first information feedback of the first reference signal based on the first oversampling rate of the first dimension and the first oversampling rate of the second dimension in response to transmitting the first configuration message; and transmitting a second configuration message comprising a second oversampling rate of the first dimension and a second oversampling rate of the second dimension after receiving the first information feedback of the first reference signal.