Abstract:
The present disclosure proposes a method of cooperative MIMO wireless communication, and a base station using the same. A base station would have a plurality of radio remote units (RRUs), and each of the RRUs may have a specific radio coverage and a plurality of antennas coupled to each of the RRUs. The function of the base station may include receiving a UE information, receiving a service flow, deriving a service type of the service flow, and determining a MIMO scheme, modulating the service flow into a MIMO stream according to the MIMO scheme, allocating a plurality of resource blocks, wherein the resource blocks may correspond to a portion or all of the RRUs, distributing the MIMO stream into a plurality of downlink sub streams and transmitting the downlink sub streams through the resource blocks by the RRUs corresponding to the resource blocks.
Abstract:
A communication method, an electronic device and a system for managing transmission of notification messages are provided. The method recognizes a transmission power of a base station is to be increased or decreased according to information of the base station. If the transmission power of the base station is to be increased, a first notification procedure is triggered to have one or more vicinity base stations of the base station transmitting a first message. And if the transmission power of the base station is to be decreased, a second notification procedure is triggered to have the base station transmitting a second message.
Abstract:
The present disclosure proposes a method of cooperative MIMO wireless communication, and a base station using the same. A base station would have a plurality of radio remote units (RRUs), and each of the RRUs may have a specific radio coverage and a plurality of antennas coupled to each of the RRUs. The function of the base station may include receiving a UE information, receiving a service flow, deriving a service type of the service flow, and determining a MIMO scheme, modulating the service flow into a MIMO stream according to the MIMO scheme, allocating a plurality of resource blocks, wherein the resource blocks may correspond to a portion or all of the RRUs, distributing the MIMO stream into a plurality of downlink sub streams and transmitting the downlink sub streams through the resource blocks by the RRUs corresponding to the resource blocks.
Abstract:
The disclosure provides an electronic lock without an active power source, an electronic lock system, and a method of operating the electronic lock. According to an exemplary embodiment, the electronic lock includes a WPR which receives wireless electrical power to provide power for the electronic lock; a circuit board electrically connected to the WPR and including a wireless transceiver which receives a lock command or an unlock command; and a controller configured to generate a lock control signal or an unlock control signal in response to receiving the lock command or an unlock command; and an actuator electrically connected to the circuit board and receives the lock control signal to lock a mechanical lock component or the unlock control signal to unlock the mechanical lock component.
Abstract:
The disclosure provides an electronic lock without an active power source, an electronic lock system, and a method of operating the electronic lock. According to an exemplary embodiment, the electronic lock includes a WPR which receives wireless electrical power to provide power for the electronic lock; a circuit board electrically connected to the WPR and including a wireless transceiver which receives a lock command or an unlock command; and a controller configured to generate a lock control signal or an unlock control signal in response to receiving the lock command or an unlock command; and an actuator electrically connected to the circuit board and receives the lock control signal to lock a mechanical lock component or the unlock control signal to unlock the mechanical lock component.
Abstract:
A communication terminal device is applicable to an aerial vehicle. The communication terminal device includes an antenna, an altimeter and a processing circuit. The antenna is configured to provide a transceiving range of electromagnetic waves. The flight height detector is configured to obtain an altitude measurement value adapted to specify an altitude of the aerial vehicle. The processing circuit is coupled to the altimeter and is configured to: determine whether the altitude measurement value exceeds a height threshold value; set the transceiving range of electromagnetic waves of the antenna to be omni-directional in response to determining that the altitude measurement value does not exceed the height threshold value; in response to determining that the altitude exceeds the height threshold value, execute an antenna beam width adjusting mechanism, so that the transceiving range of electromagnetic waves of the antenna is shaped into a directional beam.
Abstract:
A communication terminal device is applicable to an aerial vehicle. The communication terminal device includes an antenna, an altimeter and a processing circuit. The antenna is configured to provide a transceiving range of electromagnetic waves. The flight height detector is configured to obtain an altitude measurement value adapted to specify an altitude of the aerial vehicle. The processing circuit is coupled to the altimeter and is configured to: determine whether the altitude measurement value exceeds a height threshold value; set the transceiving range of electromagnetic waves of the antenna to be omni-directional in response to determining that the altitude measurement value does not exceed the height threshold value; in response to determining that the altitude exceeds the height threshold value, execute an antenna beam width adjusting mechanism, so that the transceiving range of electromagnetic waves of the antenna is shaped into a directional beam.