Abstract:
Apparatus, systems, articles of manufacture, and methods for processing video in virtual reality environments are disclosed. An example virtual reality display device to process video in a virtual reality environment includes a video analyzer to detect unsmooth video data in the stream of video data and a video library to provide alternative video data. The example device also includes a selector to receive the stream of video data, an indication of the unsmooth video data, and the alternative video data. The selector is to select the alternative video data to replace the unsmooth video data based on the indication of the unsmooth video data and output a modified stream of video data including the stream of video data with the alternative video data in place of the unsmooth video data. The example device also includes an output display to display the modified stream of video data.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of controlling data flow over a communication network. For example, an apparatus may include a communication unit to communicate between first and second devices a transfer response, the transfer response in response to a transfer request, the transfer response including a transfer pending status indicating data is pending to be received at the second device, the communication unit is to communicate the transfer response regardless of whether a retry indicator of the transfer request represents a first request for transfer or a retried request.
Abstract:
Disclosed herein are connection management techniques for wireless docking. According to various such techniques, a wireless docking station may be arranged to implement an auto-connect mode setting that defines whether mobile clients are permitted to automatically connect to the wireless docking station, and may be arranged to implement a persistent pairing setting that defines whether authentication certificates may be reused. In some embodiments, the wireless docking station may be configured to advertise the auto-connect mode setting and the persistent pairing setting in auto-connect capability information elements (IEs) that it includes in probe requests and/or probe responses. The embodiments are not limited in this context.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of supporting streaming over a Protocol Adaptation Layer (PAL). For example, an apparatus may include a first PAL communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection, over a PAL, between a first device and a second device, the PAL is above a layer of the communication link, the PAL traffic comprising data to be communicated between the first device and one or more endpoints via the second device, wherein the first PAL communication unit is to communicate an endpoint open stream request and an endpoint open stream response with the second PAL communication unit over the communication link.
Abstract:
Disclosed herein are connection management techniques for wireless docking. According to various such techniques, a wireless docking station may be arranged to implement an auto-connect mode setting that defines whether mobile clients are permitted to automatically connect to the wireless docking station, and may be arranged to implement a persistent pairing setting that defines whether authentication certificates may be reused. In some embodiments, the wireless docking station may be configured to advertise the auto-connect mode setting and the persistent pairing setting in auto-connect capability information elements (IEs) that it includes in probe requests and/or probe responses. The embodiments are not limited in this context.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of transitioning a device to a default state. For example, an apparatus may include a first Protocol Adaptation Layer (PAL) communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection over a PAL, the PAL is above a layer of the communication link, wherein the first PAL communication unit is to communicate a device reset request and a device reset response with the second PAL communication unit over the communication link, the device reset request indicating transitioning of a peripheral device to a default state, the device reset response in response to the device reset request, the device reset response indicating whether the device reset request is successfully handled.
Abstract:
Disclosed herein are connection management techniques for wireless docking. According to various such techniques, a wireless docking station may be arranged to implement an auto-connect mode setting that defines whether mobile clients are permitted to automatically connect to the wireless docking station, and may be arranged to implement a persistent pairing setting that defines whether authentication certificates may be reused. In some embodiments, the wireless docking station may be configured to advertise the auto-connect mode setting and the persistent pairing setting in auto-connect capability information elements (IEs) that it includes in probe requests and/or probe responses. The embodiments are not limited in this context.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of transitioning a device to a default state. For example, an apparatus may include a first Protocol Adaptation Layer (PAL) communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection over a PAL, the PAL is above a layer of the communication link, wherein the first PAL communication unit is to communicate a device reset request and a device reset response with the second PAL communication unit over the communication link, the device reset request indicating transitioning of a peripheral device to a default state, the device reset response in response to the device reset request, the device reset response indicating whether the device reset request is successfully handled.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of controlling data flow over a communication network. For example, an apparatus may include a communication unit to communicate between first and second devices a transfer response, the transfer response in response to a transfer request, the transfer response including a transfer pending status indicating data is pending to be received at the second device, the communication unit is to communicate the transfer response regardless of whether a retry indicator of the transfer request represents a first request for transfer or a retried request.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating during an Association-Beamforming-Training (A-BFT). For example, a device may include a wireless communication unit to communicate a beacon frame during a beacon transmission interval (BTI), the beacon frame including a responder address field including a responder address representing one or more client devices, which are allowed to transmit during an A-BFT period following the BTI.