Abstract:
Embodiments related to gaze-assisted touchscreen inputs are disclosed. In some embodiments, a computing system may receive a gaze location signal indicative of a region of a user's gaze on a touchscreen, receive a touch signal indicative of a touch of the user on the touchscreen, and generate an input signal for the computing system based at least in part on the gaze location signal and the touch signal. Other embodiments may be disclosed and/or claimed.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for a display apparatus. In one embodiment, the apparatus may include one or more micro-electro-mechanical system (MEMS) devices. The MEMS device may include a first electrode including a partially reflective surface, a second electrode including a partially or completely reflective surface and disposed substantially parallel to the first electrode, and an analog actuation arrangement coupled to the first electrode, the second electrode or both the first and second electrodes to cause movement of the first electrode from a start position to a selected position of a plurality of end positions, responsive to a selected application of an actuation voltage, to cause the MEMS device to selectively output a reflection of a light in a selected wavelength, or no reflection of the light. Other embodiments may be described and/or claimed.
Abstract:
Techniques are disclosed for improving energy efficiency of displays, and in particular, displays capable of selective refresh. In an embodiment, the techniques include adjusting the effective resolution of a display based on the viewer's distance from the display. The effective resolution adjustment can be accomplished by, for example, grouping individual pixels or blurring the display buffer (or both pixel grouping and blurring) based on the viewer's distance from the display. Such an adjustment has the effect of creating enlarged pixels from a plurality of smaller pixels. In any such cases, each of the enlarged pixels (also called macro-pixels) can then be selectively refreshed based on changes from the previous frame. In addition, even if one of the macro-pixels has changed from the last frame, it also need not be refreshed if the viewer would not perceive that change given a subtle or otherwise unperceivable difference in intensity.
Abstract:
Rendering techniques are disclosed for displays capable of adjusting/changing the angle of individual pixels (or pixel groups), referred to herein as textured displays. The textured displays may be capable of creating on demand textures which may be used to simulate the surface of an object in a scene. The rendering techniques may be used to improve upon the realism of rendered scenes/objects and they may provide users with a unique rendering experience whereby the textured display physically changes to mimic textures of the rendered scenes/objects. This can be achieved by sending geometric data, such as surface normal information, to individual pixels of the textured display. Other factors may be considered when adjusting the angle of individual pixels of the textured display, such as whether the user is experiencing too much glare.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for a display apparatus. In one embodiment, the apparatus may include one or more micro-electro-mechanical system (MEMS) devices. The MEMS device may include a first electrode including a partially reflective surface, a second electrode including a partially or completely reflective surface and disposed substantially parallel to the first electrode, and an analog actuation arrangement coupled to the first electrode, the second electrode or both the first and second electrodes to cause movement of the first electrode from a start position to a selected position of a plurality of end positions, responsive to a selected application of an actuation voltage, to cause the MEMS device to selectively output a reflection of a light in a selected wavelength, or no reflection of the light. Other embodiments may be described and/or claimed.
Abstract:
Techniques are disclosed for direct viewer projection, which involves having each pixel's emitted light aimed at or otherwise provided directly to the target pupil of a viewing person. In one embodiment, the techniques are implemented using steerable, collimated light sources fashioned into an array to effectively provide a display screen. Each steerable, collimated light source of the array corresponds to one pixel of a given image at a given viewing location, such that no one light source shows a whole image; rather, the whole array is used to display an image. The array can be scanned to provide different images to different viewing locations. The content projected to the different locations may be related (e.g., a movie) or unrelated (e.g., two different movies). A specific viewer can be identified and tracked such that the content is only projected to the target viewer's eyes and no one else's.
Abstract:
Embodiments related to gaze-assisted touchscreen inputs are disclosed. In some embodiments, a computing system may receive a gaze location signal indicative of a region of a user's gaze on a touchscreen, receive a touch signal indicative of a touch of the user on the touchscreen, and generate an input signal for the computing system based at least in part on the gaze location signal and the touch signal. Other embodiments may be disclosed and/or claimed.