Abstract:
Various embodiments are directed to techniques for employing a camera to receive multiple light transmissions conveying at least identifying data from multiple body-carried devices to enable locations of those devices within a venue to be determined and transmissions to individual ones of those devices to be made. An apparatus to communicate via light transmissions includes an analysis component to analyze a set of consecutively captured frames of a portion of a venue to determine whether a light source present in at least a predetermined number of the consecutively captured frames is a light transmission from a body-carried device located within the portion of the venue, and to demodulate the light transmission to retrieve an identification (ID) data associated with the body-carried device from the light transmission; and a communications component to employ the ID data to wirelessly transmit a command to the body-carried device. Other embodiments are described and claimed.
Abstract:
Optical signaling is implemented by modulating visible light with variable pulse position modulation (VPPM). VPPM is a composite waveform and its optical signal includes a Start Frame Delimiter (SFD) which indicates start of optical signaling. To identify modulated lights, the duty cycle is periodically changed in the waveform to induce an AM envelope at a frequency higher than the response of the human eye. The signal is then sampled via a camera producing an alias frequency that produces noticeable blinking. Because the communication is asynchronous, the desired camera frame rate (fc) in relationship to the modulation bit rate timing clock (or symbol rate, fs) is only approximate. Consequently, a frequency offset develops between the camera frame rate (fc) and the symbol rate (fs) in transmission of long packets. The disclosed embodiments provide a detection algorithm, system and apparatus to provide clock offset tracking and correction.
Abstract:
A communication device can be configured to detect radar signals within an operating channel. The communication device can include a mixer, filter, scanning and spreading circuit and a radar signal detector. The mixer can be configured to modulate a received communication signal based on an oscillating signal to generate a modulated signal. The filter can have a first bandwidth and be configured to filter the modulated signal. The scanning and spreading circuit can be configured to control the oscillating signal to scan an operating channel having a second bandwidth. The second bandwidth can be greater than the first bandwidth. The radar signal detector can be configured to detect a radar signal within the scanned operating channel.
Abstract:
Embodiments of wireless antenna array systems to achieve three-dimensional beam coverage are described herein. Other embodiments may be described and claimed.
Abstract:
Examples are disclosed for a mobile device to wirelessly dock to a device. In some examples, a mobile device may receive an indication to identify a device for wirelessly docking. The mobile device may gather identification for possible devices to wirelessly dock. A ranging technique may be implemented using a given frequency band to identify a device within a shortest distance from the mobile device from among the possible devices. The device having the shortest distance may be selected and a wireless dock may then be established. Other examples are described and claimed.
Abstract:
A light array includes lights that transmit modulated light to indicate their unique light identifiers (IDs) and lights that transmit unmodulated light. A light receiver records images of the light array and recovers the light IDs from the modulated light. The light receiver uses the IDs to retrieve a light map representative of the light array. The receiver aligns the retrieved light map with the recorded images of the light array, and accesses real-world positions of all of the light in the light array, as deployed, based on the aligned light map. The light receiver determines a 3-dimensional position of the light receiver relative to the light array.
Abstract:
A method of collision warning using broad antenna pattern ultra-wide band (UWB) radar includes emitting a first radar ping from a broad beam UWB antenna and receiving a first return signal identifying an object. A first hemisphere with a first radius is determined for the object. A second ping, second return and second hemisphere is defined for the object. At the intersection of the hemispheres, an object ring is defined. The radius of the object ring is compared with the radius of a collision cylinder (e.g., representing a safe distance around a system or device, such as a drone). The object may be identified as posing a collision threat when the radius of the object ring is smaller than the radius of the collision cylinder.
Abstract:
Optical wireless communication techniques are described and claimed. In one embodiment, the disclosure relates to method and apparatus to provide optical signaling with visible light having variable pulse position modulation (VPPM). The optical signal includes a Start Frame Delimiter (SFD) which indicates beginning of an asynchronous optical signaling. The VPPM signaling includes a lower frequency time varying amplitude component that when subsampled by a low frame rate camera results in alias induced flicker or blinking. Such signals are quickly recognizable as signals with modulated data. In another embodiment, the disclosure provides a system, device and method for decoding a Start Frame Delimiter (SFD) to indicate arrival of incoming VPPM optical data.
Abstract:
Embodiments may provide a way of communicating via an electromagnetic radiator, or light source, that can be amplitude modulated such as light emitting diode (LED) lighting and receivers or detectors that can determine data from light received from the amplitude modulated electromagnetic radiator. Some embodiments may provide a method of transmitting/encoding data via modulated LED lighting and other embodiments may provide receiving/decoding data from the modulated LED lighting by means of a device with a low sampling frequency such as a relatively inexpensive camera (as might be found in a smart phone). Some embodiments are intended for indoor navigation via photogrammetry (i.e., image processing) using self-identifying LED light anchors. In many embodiments, the data signal may be communicated via the light source at amplitude modulating frequencies such that the resulting flicker is not perceivable to the human eye.
Abstract:
Embodiments of wireless antenna array systems to achieve three-dimensional beam coverage are described herein. Other embodiments may be described and claimed.