Abstract:
An integrated circuit includes protected container access control logic to perform a set of access control checks and to determine whether to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). The DPCM and the I/O device are allowed to communicate securely if it is determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for the aforementioned one of DMA and MMIO. In some cases, a Security Attributes of Initiator (SAI) or security identifier may be used to obtain a DPCM identifier or attest that access is from a DPCM mapped to the I/O device. In some cases, a determination may be made that a type of access is compatible with one or more allowed access types for the page as represented in a protected container page metadata structure.
Abstract:
An example method for remapping a group of system registers. The method may include receiving, by a secure access control mechanism, a request to remap one of a group of system registers from an association with a first access policy group to an association with a second access policy group. The method may include storing the remapping array at a memory of the secure access control mechanism, where a first value stored in a first entry of the remapping array maps the one of the group of system registers to the second access policy group. The method may include remapping, by the secure access control mechanism, the one of a group of system registers from the association with the first access policy group to the association with the second access policy group using the remapping array.
Abstract:
Systems and methods for secure delivery of output surface bitmaps to a display engine. An example processing system comprises: an architecturally protected memory; and a plurality of processing devices communicatively coupled to the architecturally protected memory, each processing device comprising a first processing logic to implement an architecturally-protected execution environment by performing at least one of: executing instructions residing in the architecturally protected memory, or preventing an unauthorized access to the architecturally protected memory; wherein each processing device further comprises a second processing logic to establish a secure communication channel with a second processing device of the processing system, employ the secure communication channel to synchronize a platform identity key representing the processing system, and transmit a platform manifest comprising the platform identity key to a certification system.
Abstract:
An integrated circuit includes protected container access control logic to perform a set of access control checks and to determine whether to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). The DPCM and the I/O device are allowed to communicate securely if it is determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for the aforementioned one of DMA and MMIO. In some cases, a Security Attributes of Initiator (SAI) or security identifier may be used to obtain a DPCM identifier or attest that access is from a DPCM mapped to the I/O device. In some cases, a determination may be made that a type of access is compatible with one or more allowed access types for the page as represented in a protected container page metadata structure.
Abstract:
An integrated circuit includes protected container access control logic to perform a set of access control checks and to determine whether to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). The DPCM and the I/O device are allowed to communicate securely if it is determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for the aforementioned one of DMA and MMIO. In some cases, a Security Attributes of Initiator (SAI) or security identifier may be used to obtain a DPCM identifier or attest that access is from a DPCM mapped to the I/O device. In some cases, a determination may be made that a type of access is compatible with one or more allowed access types for the page as represented in a protected container page metadata structure.
Abstract:
An example method for remapping a group of system registers. The method may include receiving, by a secure access control mechanism, a request to remap one of a group of system registers from an association with a first access policy group to an association with a second access policy group. The method may include storing the remapping array at a memory of the secure access control mechanism, where a first value stored in a first entry of the remapping array maps the one of the group of system registers to the second access policy group. The method may include remapping, by the secure access control mechanism, the one of a group of system registers from the association with the first access policy group to the association with the second access policy group using the remapping array.
Abstract:
An integrated circuit includes protected container access control logic to perform a set of access control checks and to determine whether to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). The DPCM and the I/O device are allowed to communicate securely if it is determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for the aforementioned one of DMA and MMIO. In some cases, a Security Attributes of Initiator (SAI) or security identifier may be used to obtain a DPCM identifier or attest that access is from a DPCM mapped to the I/O device. In some cases, a determination may be made that a type of access is compatible with one or more allowed access types for the page as represented in a protected container page metadata structure.
Abstract:
An integrated circuit includes protected container access control logic to perform a set of access control checks and to determine whether to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). The DPCM and the I/O device are allowed to communicate securely if it is determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for the aforementioned one of DMA and MMIO. In some cases, a Security Attributes of Initiator (SAI) or security identifier may be used to obtain a DPCM identifier or attest that access is from a DPCM mapped to the I/O device. In some cases, a determination may be made that a type of access is compatible with one or more allowed access types for the page as represented in a protected container page metadata structure.
Abstract:
An integrated circuit of an aspect includes protected container access control logic to perform a set of access control checks and to determine to allow a device protected container module (DPCM) and an input and/or output (I/O) device to communicate securely through one of direct memory access (DMA) and memory-mapped input/output (MMIO). This is done after it has been determined that at least the DPCM and the I/O device are mapped to one another, an access address associated with the communication resolves into a protected container memory, and a page of the protected container memory into which the access address resolves allows for said one of DMA and MMIO.