Abstract:
This disclosure describes systems, methods, and devices related to enhanced multiple access point (AP) coordination. A device may determine a first access point (AP) is an associated AP of a station device (STA). The device may identify a null data packet announce (NDPA) frame received from the first AP. The device may determine a propagation delay between the first AP and the device based on the NDPA frame. The device may identify a multi-AP trigger frame received from the first AP at a first time. The device may cause a data packet to be sent to the STA at a second time, wherein the second time is based on the propagation delay.
Abstract:
This disclosure relates to offloading processing intensive tasks in communication protocol specific operations off the device, e.g. to another network node connected to the device via a network. Such tasks may for example include flow control, segmentation/desegmentation, and/or error control. As part of error control, protocols of the transport protocol layer of the OSI protocol stack may include checksum calculation to ensure reliability of the (payload) data. The calculation of checksums may be processing intensive. For this reason, example client nodes that realize the offloading of processing intensive tasks in communication protocol specific operations to another network node may not utilize any transport layer protocol at all, but rely on flow control and error control implemented in most modern data link layer protocols (Layer 2 of the OSI protocol stack). Accordingly, the processing intensive tasks can be “shifted” from the client device to another device.
Abstract:
The disclosure generally relates to a method and system for fast channel scan for DOCSIS cable modems. The disclosed exemplary embodiments are directed to hybrid fiber coaxial (HFC) modems and may be equally applied to other type of modems both wired and wireless. The disclosed embodiments enable locating the Physical Link Layer Channel (PLC) quickly by using a beacon channel at a designated frequency offset from the PLC.
Abstract:
The disclosure generally relates to a method and system for fast channel scan for DOCSIS cable modems. The disclosed exemplary embodiments are directed to hybrid fiber coaxial (HFC) modems and may be equally applied to other type of modems both wired and wireless. The disclosed embodiments enable locating the Physical Link Layer Chanel (PLC) quickly by using a beacon channel at a designated frequency offset from the PLC.
Abstract:
A method and apparatus for offloading packet classification processing of an access point in a residential gateway. A residential gateway includes a wireless access point and a processing circuit. The processing circuit receives a data packet from a network via a network port, processes the data packet to obtain packet classification information for the data packet, and sends the data packet with the packet classification information to the access point. The access point may process the data packet based on the packet classification information received from the processing circuit. The packet classification information includes at least one of a basic service set identifier, a station identifier, and an access category. The processing circuit may include a packet accelerator. The packet accelerator may write a cookie including the packet classification information in a packet descriptor for the data packet.
Abstract:
A method and apparatus for offloading packet classification processing of an access point in a residential gateway. A residential gateway includes a wireless access point and a processing circuit. The processing circuit receives a data packet from a network via a network port, processes the data packet to obtain packet classification information for the data packet, and sends the data packet with the packet classification information to the access point. The access point may process the data packet based on the packet classification information received from the processing circuit. The packet classification information includes at least one of a basic service set identifier, a station identifier, and an access category. The processing circuit may include a packet accelerator. The packet accelerator may write a cookie including the packet classification information in a packet descriptor for the data packet.
Abstract:
This disclosure relates to offloading processing intensive tasks in communication protocol specific operations off the device, e.g. to another network node connected to the device via a network. Such tasks may for example include flow control, segmentation/desegmentation, and/or error control. As part of error control, protocols of the transport protocol layer of the OSI protocol stack may include checksum calculation to ensure reliability of the (payload) data. The calculation of checksums may be processing intensive. For this reason, example client nodes that realize the offloading of processing intensive tasks in communication protocol specific operations to another network node may not utilize any transport layer protocol at all, but rely on flow control and error control implemented in most modern data link layer protocols (Layer 2 of the OSI protocol stack). Accordingly, the processing intensive tasks can be “shifted” from the client device to another device.
Abstract:
Example methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to control digital video bandwidth utilization with a virtualized communication hub are disclosed. Example methods disclosed herein include monitoring, with a virtual access function of the virtualized communication hub, an aggregate load on a broadband access medium to detect bandwidth utilization events. Disclosed example methods also include sending, from the virtual access function, a first notification message to a virtual set-top box of the virtualized communication hub in response to detecting a first bandwidth utilization event. Disclosed example methods further include adjusting, at the virtual set-top box and based on the first notification message, an output bandwidth for streaming digital media from the virtual set-top box to a physical set-top box via a broadband access medium.
Abstract:
Techniques are disclosed for controlling data transmission in multi-stream digital systems. The techniques disclosed allow an input stream to a conditional access system to be throttled when a FIFO begins to fill up. Each data stream may have its own FIFO, which sends data to a MUX and exports its status to a backpressure rate control module. Multiple seconds worth of data may be stored in a BPRC buffer ahead of the backpressure rate control module prior to being transmitted to a MUX FIFO buffer. The backpressure rate control module may use the cached data to fill available spaces within a MUX FIFO buffer. The determination to forward a data packet may be based on the individual MUX FIFO buffer levels, the sum of all the MUX FIFO buffer levels, and/or one or more configurable threshold values. In some embodiments, individual thresholds may be assigned to each FIFO buffer.
Abstract:
Example methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to control digital video bandwidth utilization with a virtualized communication hub are disclosed. Example methods disclosed herein include monitoring, with a virtual access function of the virtualized communication hub, an aggregate load on a broadband access medium to detect bandwidth utilization events. Disclosed example methods also include sending, from the virtual access function, a first notification message to a virtual set-top box of the virtualized communication hub in response to detecting a first bandwidth utilization event. Disclosed example methods further include adjusting, at the virtual set-top box and based on the first notification message, an output bandwidth for streaming digital media from the virtual set-top box to a physical set-top box via a broadband access medium.