Abstract:
Methods and apparatus are described herein for dynamic allocation of multiple channels and data streams for multi-channel transmission and multiple-input and multiple-output (MIMO). For example, a station (STA) may receive an enhanced poll (EPoll) frame that includes a time offset, a channel offset and antenna/sector settings from an access point (AP). The STA may transmit, based on the received EPoll frame, an enhanced service period request (ESPR) frame that includes a MIMO control field and a multi-channel control field. The MIMO control field may indicate whether the STA supports MIMO transmission. The multi-channel control field may indicate whether the STA supports multi-channel transmission. Upon transmitting the ESPR frame, the STA may receive an enhanced grant frame from the AP. The enhanced grant frame may include an antenna configuration and a multi-channel allocation to enable the STA to perform the MIMO transmission and the multi-channel transmission.
Abstract:
A method for use in an IEEE 802.11 station (STA) for receiving data from an IEEE 802.11 access point (AP) via a coordinated orthogonal block resource allocation (COBRA) is described. The STA may receive a COBRA schedule from the AP and transmit an acknowledgement (ACK) to the AP in the COBRA TXOP. The STA may receive a first data packet in the COBRA TxOP based on the COBRA schedule. The STA may determine whether the first data packet is received successfully and on a condition that the first data packet is not received successfully, the STA may transmit a negative acknowledgement (NACK) to the AP in the COBRA TxOP.
Abstract:
A method and apparatus is described herein for performing loop power control and transmission power control (TPC) in a wireless network. Described herein are methods including using separate power control loops for communication with an entire wireless network and for point-to-point (P2P) transmissions and separate power control loops for omni-directional and directional beamformed transmissions. Also described herein are methods and apparatuses for requesting clear channel assessment (CCA) measurements and adjusting CCA thresholds and transmission power based on the reported measurements. Methods and apparatuses are also described wherein access points (APs) coordinate transmission power to reduce interference with each other and to determine optimal transmission power to each mobile station (STA).
Abstract:
Systems, methods, and instrumentalities are disclosed for concurrent link setup and downlink data retrieval, e.g., for high efficiency WLAN. An access point (AP) may send a trigger element that allocates a resource for pre-association transmissions with the AP. The trigger element may allocate the resource for random access and/or deterministic access. The AP may receive, from an unassociated STA, a first frame via one or more resource units (RUs) allocated in the trigger element. The AP may determine a pre-association identifier (PID) that identifies the unassociated STA. The AP may send the PID to the unassociated STA, for example, in the trigger element or in the multi-STA ACK. The AP may send a second frame associated with a multi-user (MU) transmission that includes the PID. The AP may send a trigger frame that includes the PID.
Abstract:
A method performed by a STA may comprise receiving data of a MU-HE-PPDU, from an AP. The MU-HE-PPDU may comprise a HE-SIG-A field, a first HE-SIG-B portion and a second HE-SIG-B portion. The first HE-SIG-B portion may be received on a first channel and the second HE-SIG-B portion may be received on a second channel which is different than the first channel. The first HE-SIG-B portion may include one or more STA identifiers.
Abstract:
A method performed by a STA may comprise transmitting an HE LTF of a data unit. The HE LTF may have a number of symbols based on a number of space-time streams utilized for the data unit. The HE LTF may be transmitted on a subset of subcarriers of a 20 MHz channel, a 40 MHz channel or an 80 MHz channel.
Abstract:
A method performed by a STA of a WLAN may comprise receiving a trigger frame, from an AP. The trigger frame may be a trigger for uplink MU data transmission and the trigger frame may indicate a traffic priority. In response to receiving the trigger frame, the STA may transmit at least one A-MPDU comprising a plurality of data units. At least one of the plurality of data units may have a priority greater than the indicated traffic priority and another one of the plurality of data units may have a priority equal to the indicated traffic priority.
Abstract:
A method and apparatus for supporting UL MU diversity are provided. The method may comprise transmitting a MU RTS frame to a plurality of STAs, the MU RTS frame comprising a plurality of MCS indicators, a plurality of data stream number indicators, an indication of a spatial technology, and a duration field. The MU RTS frame solicits clear to send (CTS) frame responses from a plurality of STAs and simultaneous UL OFDMA transmissions may be received in accordance with the MCS indicators, the data stream number indicators and the indicated spatial technology. An AP may transmit another frame comprising UL transmission information for transmission of data frames by the plurality of STAs. The AP may receive from the plurality of STAs, the data frames simultaneously and may additionally transmit acknowledgements of the received data frames to the plurality of STAs.
Abstract:
Systems, methods, and instrumentalities are disclosed for range extension, basic service set (BSS) color labeling, and multi-user (MU) fragmentation and control in WLANs. A range extension notification/enablement scheme, a clear channel assessment (CCA), a headroom indication, and/or power scaling may be provided for a range extension mode. BSS color may be provided for multiple-BSSs under an access point (AP). Uplink (UL) transmission may be provided with different fragmentation capabilities. A high-efficiency (HE) trigger-based UL NDP physical layer convergence protocol (PLCP) protocol data unit (PPDU) frame may be provided. A station (STA) may receive a trigger frame comprising a null data packet (NDP) indication and a trigger type. The STA may determine that the STA is an intended recipient of the trigger frame. The STA may prepare an NDP PPDU for a control frame and/or a management frame based on the trigger type.
Abstract:
Systems, methods, and instrumentalities are disclosed for range extension, basic service set (B SS) color labeling, and multi-user (MU) fragmentation and control in WLANs. A range extension notification/enablement scheme, a clear channel assessment (CCA), a headroom indication, and/or power scaling may be provided for a range extension mode. BSS color may be provided for multiple-BSSs under an access point (AP). Uplink (UL) transmission may be provided with different fragmentation capabilities. A high-efficiency (HE) trigger-based UL NDP physical layer convergence protocol (PLCP) protocol data unit (PPDU) frame may be provided. A station (STA) may receive a trigger frame comprising a null data packet (NDP) indication and a trigger type. The STA may determine that the STA is an intended recipient of the trigger frame. The STA may prepare an NDP PPDU for a control frame and/or a management frame based on the trigger type.