Abstract:
An integrated circuit includes a semiconductor substrate and integrated circuitry on the semiconductor substrate. The integrated circuitry includes a static random access memory (SRAM) array including a conductive line and an assist circuit having a boost capacitor coupled to boost a voltage on the conductive line. The boost capacitor includes first and second plates. The integrated circuit further includes a sense circuit having an input coupled to one of the first and second plates of the boost capacitor and an output and a sample circuit coupled to the output of the sense circuit. The sample circuit is configured to detect a short circuit in the boost capacitor based on a state change at the output of the sense circuit.
Abstract:
A metal insulator metal capacitor and method for fabricating a metal insulator metal capacitor (MIMcap) are disclosed. A first level metal pattern is embedded in a first dielectric layer over a substrate. The first level metal pattern has a top surface co-planar with a top surface of the first dielectric layer. In a selected etch step, either one of the first metal pattern or the first dielectric is etched to form a stepped top surface. A conformal insulating layer on the stepped top surface. The MIMcap is formed on the conformal insulating layer in a conformal manner.
Abstract:
A metal insulator metal capacitor and method for fabricating a metal insulator metal capacitor (MIMcap) are disclosed. A first level metal pattern is embedded in a first dielectric layer over a substrate. The first level metal pattern has a top surface co-planar with a top surface of the first dielectric layer. In a selected etch step, either one of the first metal pattern or the first dielectric is etched to form a stepped top surface. A conformal insulating layer on the stepped top surface. The MIMcap is formed on the conformal insulating layer in a conformal manner.
Abstract:
A method of forming a semiconductor structure includes forming a first insulating layer containing a first metal layer embedded therein and on a surface of a semiconductor substrate. The method further includes forming an inter-layer dielectric (ILD) layer on the first insulating layer, and forming at least one via trench structure including a first metallization trench and a via in the ILD layer. In addition, the method also includes depositing a metal material to form a first metallization layer in the first metallization trench, a via contact in the via, and a second metal layer on top of at least a portion of the first metal layer in the opening of the first insulating layer. The first metal layer and the second metal layer constitute a multilayer metal contact located in the opening of the first insulating layer.
Abstract:
A structure including a plurality of dielectric regions is described. The structure can include a rivet cell. The rivet cell can include a set of stacked vias. The rivet cell can extend through a stress hotspot of the structure. A length of the rivet cell can thread through at least one dielectric region among the plurality of dielectric regions. The rivet cell can be among a number of rivet cells inserted in the stress hotspot. The stress hotspot can be among a plurality of stress hotspots across the structure. A length of the rivet cell can be based on a model of a relationship between the length of the rivet cell and an energy release rate of the structure. The rivet cell can thread through an interface between a first dielectric region and a second dielectric region having different dielectric constants.
Abstract:
A MIM capacitor including a bottom metal layer on a substrate, a first contact window in the bottom metal layer; and a first dielectric spacer disposed within the first contact window on vertical sidewalls of the bottom metal layer, where the first dielectric spacer has a rounded upper surface, where a bottom most surface of the bottom metal layer is substantially flush with a bottom most surface of the first insulator layer. A method including forming a bottom metal layer on a substrate, forming a first contact window in the bottom metal layer, and forming a first dielectric spacer disposed within the first contact window on vertical sidewalls of the bottom metal layer, wherein the first dielectric spacer has a rounded upper surface.
Abstract:
A method of forming a semiconductor structure includes forming a first insulating layer containing a first metal layer embedded therein and on a surface of a semiconductor substrate. The method further includes forming an inter-layer dielectric (ILD) layer on the first insulating layer, and forming at least one via trench structure including a first metallization trench and a via in the ILD layer. In addition, the method also includes depositing a metal material to form a first metallization layer in the first metallization trench, a via contact in the via, and a second metal layer on top of at least a portion of the first metal layer in the opening of the first insulating layer. The first metal layer and the second metal layer constitute a multilayer metal contact located in the opening of the first insulating layer.