Abstract:
An integrated circuit, including: a UTBOX layer; a first cell, including: FDSOI transistors; a first STI separating the transistors; a first ground plane located beneath one of the transistors and beneath the UTBOX layer; a first well; a second cell, including: FDSOI transistors; a second STI separating the transistors; a second ground plane located beneath one of the transistors and beneath the UTBOX layer; a second well; a third STI separating the cells, reaching the bottom of the first and second wells; a deep well extending continuously beneath the first and second wells, having a portion beneath the third STI whose doping density is at least 50% higher than the doping density of the deep well beneath the first and second STIs.
Abstract:
A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
A method of forming a semiconductor-on-insulator (SOI) device includes defining a shallow trench isolation (STI) structure in an SOI substrate, the SOI substrate including a bulk layer, a buried insulator (BOX) layer over the bulk layer, and an SOI layer over the BOX layer; forming a doped region in a portion of the bulk layer corresponding to a lower location of the STI structure, the doped region extending laterally into the bulk layer beneath the BOX layer; selectively etching the doped region of the bulk layer with respect to undoped regions of the bulk layer such that the lower location of the STI structure undercuts the BOX layer; and filling the STI structure with an insulator fill material.
Abstract:
Methods for semiconductor fabrication include forming a well in a semiconductor substrate. A pocket is formed within the well, the pocket having an opposite doping polarity as the well to provide a p-n junction between the well and the pocket. Defects are created at the p-n junction such that a leakage resistance of the p-n junction is decreased.
Abstract:
A method of forming a semiconductor-on-insulator (SOI) device includes defining a shallow trench isolation (STI) structure in an SOI substrate, the SOI substrate including a bulk layer, a buried insulator (BOX) layer over the bulk layer, and an SOI layer over the BOX layer; forming a doped region in a portion of the bulk layer corresponding to a lower location of the STI structure, the doped region extending laterally into the bulk layer beneath the BOX layer; selectively etching the doped region of the bulk layer with respect to undoped regions of the bulk layer such that the lower location of the STI structure undercuts the BOX layer; and filling the STI structure with an insulator fill material.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.