Abstract:
A mainframe door assembly for a frame is provided. The mainframe door assembly includes a door having opposed first and second sides and first and second mount assemblies. The first and second mount assemblies are configured to mount the first and second sides of the door to the frame, respectively, such that the door can occupy and move between an installed position and a loading position. In the installed position, the door is flush with the frame. In the loading position, the first mount assemblies support and the second mount assemblies permit a swinging of the door about the first side or the second mount assemblies support and the first mount assemblies permit a swinging of the door about the second side.
Abstract:
Top-mount cable management structures are provided to mount to an upper surface of an electronics rack, over a cable pass-through in the upper surface. The cable management structure includes a base structure to mount to the upper surface of the rack, and reside over the cable pass-through. The base structure includes a sidewall with at least one cable opening to allow one or more cables which pass-through the cable pass-through to also pass-through the sidewall of the base structure. A cover structure is provided mounted to the base structure. The base and cover structures together define a substantially enclosed housing disposed over the cable pass-through when the cable management structure is operatively positioned over the upper surface of the electronics rack and the one or more cables pass-through the at least one cable opening in the sidewall of the base structure.
Abstract:
An apparatus is provided which includes a changeable cover assembly sized to cover, at least in part, an air outlet side of an electronics rack. The cover assembly, when positioned at the air outlet side of the rack, redirects and vents airflow egressing from the air outlet side. The cover assembly includes a frame and at least one vent cover. The frame has at least one opening through which air egressing from the electronics rack passes, and the vent cover(s) is coupled to the frame and overlies, at least in part, the opening(s) in the frame to facilitate redirecting and venting the air passing through the frame. The at least one vent cover is changeable to change a direction of the vented air. For instance, the vent cover(s) may be reversible, or otherwise adjustable or changeable, to change the direction of vented air egressing from the cover assembly.
Abstract:
An apparatus for positioning service element interface devices is provided. A gate is affixed to a computing rack by a gate hinge that rotates on a first axis. A tray is affixed to the gate. The tray has a first side and a second side that are opposite exterior surfaces of the tray. A first display and a first keyboard are affixed to the first side. A second display and a second keyboard are affixed to the second side. The first keyboard and the first display provide a first interface that is redundant with a second interface provided by the second keyboard and the second display.
Abstract:
An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
Abstract:
An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
Abstract:
An apparatus for positioning service element interface devices is provided. A gate is affixed to a computing rack by a gate hinge, wherein the gate hinge rotates on a first axis. A first tray affixed to the gate at a side edge of the first tray. A second tray affixed to the first tray at a bottom edge of the first tray by a hinge that rotates on a second axis that is perpendicular to the first axis. A first display and a first keyboard affixed to an outer surface of the first tray. A second display and a second keyboard affixed to an outer surface of the second tray.
Abstract:
A mainframe door assembly for a frame is provided. The mainframe door assembly includes a door having opposed first and second sides and first and second mount assemblies. The first and second mount assemblies are configured to mount the first and second sides of the door to the frame, respectively, such that the door can occupy and move between an installed position and a loading position. In the installed position, the door is flush with the frame. In the loading position, the first mount assemblies support and the second mount assemblies permit a swinging of the door about the first side or the second mount assemblies support and the first mount assemblies permit a swinging of the door about the second side.
Abstract:
An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
Abstract:
An enhanced computer rack having sides is provided. The rack is used for housing electronic components and comprises in one embodiment of a lift rail having a plurality of multipurpose frame members capable of being engageably connected to at least one of the rack sides such that the frame members can be retracted into or extended out from the rack. In an alternate embodiment, a lift tool is provided for hoisting object into the rack. The lift tool is connected to at least one side of the rack and is capable of being retracted inside or being extended out from the rack. The two embodiments can also be combined to provide an enhanced rack with an integrated lift rails and lift tool design.