摘要:
The present invention is related to an isolated polypeptide micro-scaffold displaying immunoglobulin CDR2 or CDR3 polypeptide sequences, comprising a CDR2 or CDR3 polypeptide sequence interconnecting fragments of the adjacent framework polypeptide sequences, which are arranged to form two anti-parallel β-strands. The present invention is further related to a method to search, select or screen for immunoglobulin CDR2 or CDR3 polypeptide sequences that bind to a given antigen or mixture of antigens, comprising the steps of: Creating a CDR library with the method of claim 13 from the genetic information of an individual or group of individuals; Select a CDR, which binds to said antigen or mixture of antigens.
摘要:
The present invention is related to a quantitative structure-based affinity scoring method for peptide/protein complexes. More specifically, the present invention comprises a method that operates on the basis of a highly specific force field function (e.g. CHARMM) that is applied to all-atom structural representations of peptide/receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. The method of the invention further comprises a de novo approach to estimate dehydration energies from the simulation of individual amino acids in a solvent box filled with explicit water molecules and applying the same force field function as used to evaluate peptide/receptor complex interactions.
摘要:
The present invention is related to a quantitative structure-based affinity scoring method for peptide/protein complexes. More specifically, the present invention comprises a method that operates on the basis of a highly specific force field function (e.g. CHARMM) that is applied to all-atom structural representations of peptide/receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. The method of the invention further comprises a de novo approach to estimate dehydration energies from the simulation of individual amino acids in a solvent box filled with explicit water molecules and applying the same force field function as used to evaluate peptide/receptor complex interactions.
摘要:
The present invention is related to a quantitative structure-based affinity scoring method for peptide/protein complexes. More specifically, the present invention comprises a method that operates on the basis of a highly specific force field function (e.g. CHARMM) that is applied to all-atom structural representations of peptide/receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. The method of the invention further comprises a de novo approach to estimate dehydration energies from the simulation of individual amino acids in a solvent box filled with explicit water molecules and applying the same force field function as used to evaluate peptide/receptor complex interactions.