Abstract:
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes at least one emitter electrode and at least a one collector (and likely, at least a pair of collector electrodes) that are downstream from the emitter electrode. An insulated driver electrode is located adjacent a collector electrode, and where there is at least a pair of collector electrodes, between each pair of collector electrodes. A high voltage source provides a voltage potential to the at least one of the emitter electrode and the collector electrode(s), to thereby provide a potential different therebetween. The insulated driver electrode(s) may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode(s).
Abstract:
An air-conditioning device including a housing having at least one grill, an electrode assembly and a driver electrode. Both the electrode assembly and the driver electrode are supported by the housing. The electrode assembly includes a portion that is removable from the housing, and the driver electrode is removable from the housing independent from the removable portion of the electrode assembly.
Abstract:
Conditioning matrices for removing pollutants from air streams of electro-static and electromechanical devices are disclosed. The conditioning matrices can be coated with a reactive material that interacts with the airflow. The conditioning matrices can be positioned in the air stream and catalyze reactions of pollutants into nonpolluting compounds.
Abstract:
An air conditioning device comprises a substantially thin collector electrode capable of forming ions at a front and/or rear edge when charged. The thin collector electrode preferably having an insulating material disposed on the front and/or rear edge to prevent ions from being emitted therefrom. The collector electrode capable of being in the form of a thin elongated blade whereby an emitter electrode is upstream of the front edge or alternatively downstream of the front edge. The collector electrode alternatively in the form of a cylindrical structure or a porous grid having a plurality of air passageway cells therethrough.
Abstract:
Embodiments of the present invention are related to air conditioner systems and methods. In accordance with one embodiment of the present invention, a system includes at least one emitter electrode and at least one collector electrode that is downstream from the emitter electrode. The emitter electrode has a plurality of pins axially arranged about a center. Preferably, the pins are arranged in a circle about the center. A driver electrode is located within the interior of the collector electrode. Preferably, although not necessarily, the driver electrode is insulated. A high voltage source provides a voltage potential to at least one of the emitter electrode and the collector electrode to thereby provide a potential difference therebetween. The embodiments as described herein have some or all of the advantages of increasing the particle collection efficiency, increasing the rate and/or volume of airflow, reducing arcing, and/or reducing the amount of ozone generated.
Abstract:
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes a pin emitter electrode and a ring collector electrode located downstream from the emitter electrode. A driver electrode, which is preferably insulated, is located at least partially within an interior of said ring collector electrode. A high voltage source provides a voltage potential to at least one of said emitter electrode and said collector electrode to thereby provide a potential difference therebetween. The driver electrode may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
Embodiments of the present invention are directed to a method and apparatus for moving air using an air-conditioning system therein, whereby the air-conditioning system preferably includes at least one emitter electrode, at least one collector electrode, at least one driver electrode disposed adjacent to the collector electrode, and/or at least one trailing electrode positioned downstream of the collector electrode. The collector electrode and the driver electrode are removable from the device. In one embodiment, the driver electrodes are removable from the device and/or the collector electrode. The ability of remove the collector electrode as well as driver electrode allow for easy cleaning of the electrodes. In one embodiment, the present device includes a removable exhaust grill upon which the driver electrode and/or the trailing electrode are coupled to. The removable grill allows the user to easily clean the driver electrode without having to remove the collector electrode.
Abstract:
Embodiments of the present invention are directed to a method and apparatus for moving air using an air treatment apparatus, the air treatment apparatus preferably including at least one first electrode, at least one second electrode, and at least one third electrode, and at least a portion of the third electrode is positioned downstream of the second electrode. The air treatment apparatus includes a grill configured to be attached to the air treatment apparatus, and the grill is movable between a first position in which the grill covers the portion of the third electrode and a second position in which the portion of the third electrode is uncovered. The grill is attached to or detached from the housing when in the second position.
Abstract:
The present invention provides an air treatment device including a housing, an emitter electrode configured within the housing and a collector electrode configured within the housing and positioned downstream from the emitter electrode. The device preferably increases the ions produced for a start up period after the device is initially turned on, wherein the device automatically decreases ion production after the desired period. The device preferably includes a first and second voltage source to selectively increase and decrease voltages applied to the emitter and/or collector electrode to adjust the ion production. In one embodiment, the device includes a voltage controller to selectively adjust the voltage provided by the voltage source for the start up period and normal operation.
Abstract:
An air treatment apparatus that includes an electrode assembly, a voltage supply, a current sensing device operably coupled to the electrode assembly, and a voltage control device coupled to the current sensing device and the voltage supply. The voltage control device is configured to regulate the level of voltage based on the level of current flowing through the current sensing device to maintain the voltage and current in the electrode assembly within designated ranges.