Abstract:
An electrostatic precipitator is provided. The electrostatic precipitator includes an electrode part including a high voltage electrode with voltage applied thereto and a ground electrode coiled in a circumferential direction along with the high voltage electrode while being spaced apart from the high voltage electrode, and a plurality of turning flow paths inclined with respect to an axial direction of the electrode part between the high voltage electrode and the ground electrode.
Abstract:
An electrostatic collector including: a collection chamber delimited by a tubular wall oriented along a first axis; a collection electrode configured to be disposed inside the collection chamber against the wall; a discharge electrode, of elongate form, that extends along the first axis and includes an end, in a shape of a tip, the end being disposed opposite the collection electrode; a first part of a first diameter, emerging on the tip-shaped end, a second part of a second diameter, the second diameter being greater than or equal to twice the first diameter, the second diameter for example being between 2 and 6 times the first diameter; and a sudden widening, extending between the first part and the second part.
Abstract:
A method for applying a moisture barrier to a precipitator of cardboard for a two-step electrofilter, wherein the precipitator includes at least two paper bands (5) that constitute electrode elements in the precipitator, which paper bands (5) are multiply wound around a center axis of the precipitator, wherein the paper bands (5) exhibit a thin plastic layer with a thickness of 5-50 micrometers on their lateral surfaces (4), and where proximate electrode elements are arranged at a distance from one another in the radial direction of the precipitator. The method is characterized in that edge parts (6) of the paper bands (5) have a moisture-resistant substance applied to them. The material for fabricating a precipitator of cardboard for a two-step electrofilter is also described.
Abstract:
A discharge electrode using carbon fibers, nanofibers and/or nanotubes to generate the corona discharge. The invention contemplates conductive fiber, such as carbon strands with or without a polymer matrix to form a composite, and a supporting configuration in which the strand is extended along or wrapped helically around a supporting rod that extends along the length of the electrode. A mechanical bias is applied to each strand to maintain tension on the strand. Preferably this includes coil springs extending between bushings mounted on the rod and moveable hemispherical supports slidably mounted on the rod that seat against the strand.
Abstract:
An air quality enhancement system that includes an enclosure and an electrostatic particle ionization system. A plurality of objects is located in the enclosure. The enclosure has an interior height that is greater than a height of the objects. The plurality of objects emits particles that become airborne. The electrostatic particle ionization system includes at least one corona point and a corona point mounting mechanism. The corona point mounting mechanism operably mounts the at least one corona point within the enclosure for movement between an extended position and a retracted. When in the extended position, the at least one corona point is closer to the plurality of objects than the enclosure. When in the retracted position, the at least one corona point is closer to the enclosure than the plurality of objects.
Abstract:
An air processing device is provided by which a current-carrying section is attached to a casing by an insulating member having a covering section covering an outer periphery face of a current-carrying section and a tube-like section in which a power source-side end of the covering section is supported by a tube bottom section. This consequently secures a long insulating distance from an electric discharge spray section and a charged dust collecting section via the current-carrying section to the casing. As a result, the respective electrodes and the casing can have an improved insulating performance therebetween even under an environment where water droplets are supplied.
Abstract:
Devices for removing particles for a gas utilizing electrostatic precipitation having collector modules with fewer electrical connections, which facilitate cleaning, and/or eliminate the need for high voltage connections between a removable collector module and a collector module support. Driver electrode modules provide electrical connection between an insulated driver electrode and a source of electrical potential or between insulated driver electrodes and at least one other conductor through a hole in or on some edge on the driver electrodes. A biasing force is provided and a conductive element serves as a conductor between the driver electrode(s) and the other conductors. A plurality of insulated driver electrodes, e.g. plates, are formed with a single, conductive plate or from a plurality of electrically joined conductive plates which are coated with insulation and then bent. An electrically-shielded, high voltage generating circuit is integrated with a readily removable collector module to eliminate the need for high voltage connections between the removable collector module and the collector module support, while enhancing the device's durability and allowing cleaning with cleaning fluid and/or dishwasher detergent.
Abstract:
A damper arrangement is described which provides for selective separation of the insulator compartments from the main body of a wet electrostatic precipitator (WESP), permitting maintenance to be performed on the insulator in the compartment while process gas continues to flow through the WESP.
Abstract:
An electrode wire for use in an electrostatic precipitator is provided according to an embodiment of the invention. The electrode wire includes a wire portion of a predetermined length L, a first end, and a second end. The electrode wire further includes retaining bodies formed on the first end and the second end of the wire portion. A retaining body of the retaining bodies is substantially solid.
Abstract:
A damper arrangement is described which provides for selective separation of the insulator compartments from the main body of a wet electrostatic precipitator (WESP), permitting maintenance to be performed on the insulator in the compartment while process gas continues to flow through the WESP.