摘要:
Embodiments for predicting catalyst function are disclosed. One example embodiment includes applying a set of parameter readings for a given sample to a support vector machine to generate a classification output, recording a plurality of classification outputs for a plurality of successive samples over a first duration, and indicating catalyst degradation if a threshold percentage of the classification outputs indicates degraded catalyst performance. In this way, catalyst degradation may be indicated using a simplified model that does not require extensive calibration.
摘要:
Embodiments for predicting catalyst function are disclosed. One example embodiment includes applying a set of parameter readings for a given sample to a support vector machine to generate a classification output, recording a plurality of classification outputs for a plurality of successive samples over a first duration, and indicating catalyst degradation if a threshold percentage of the classification outputs indicates degraded catalyst performance. In this way, catalyst degradation may be indicated using a simplified model that does not require extensive calibration.
摘要:
A system and method for controlling an internal combustion engine determine a catalyst gain based on an exhaust gas sensor positioned upstream relative to a catalyst and at least one exhaust gas sensor positioned downstream relative to at least a portion of the catalyst and use the gain to determine the condition or performance of the catalyst. The gain may be determined by modeling the catalyst as an integrator with an unknown gain and estimating the gain using a polynomial approximation. The gain is compared to an expected value or threshold associated with current operating conditions, such as catalyst temperature and/or mass air flow.
摘要:
Embodiments for adjusting fuel injection are provided. In one example, a method comprises adjusting fuel injection based on fuel concentration in an engine intake manifold, and during idle and when EGR is disabled, adjusting fuel injection based on the fuel concentration and a fuel pushback amount. In this way, fuel injection may be adjusted based on fuel concentration in the intake manifold.
摘要:
Embodiments for adjusting fuel injection are provided. In one example, a method comprises adjusting fuel injection based on fuel concentration in an engine intake manifold, and during idle and when EGR is disabled, adjusting fuel injection based on the fuel concentration and a fuel pushback amount. In this way, fuel injection may be adjusted based on fuel concentration in the intake manifold.
摘要:
Embodiments for an engine exhaust are provided. In one example, a method comprises adjusting a fuel injection amount based on a fractional oxidation state of a catalyst, the fractional oxidation state based on reaction rates of a plurality of exhaust gas species throughout a catalyst longitudinal axis and a set of axially-averaged mass balance and energy balance equations for a fluid phase and a washcoat of the catalyst. In this way, a simplified catalyst model may be used to control air-fuel ratio.
摘要:
In order to provide for reduced internal combustion engine exhaust emissions when cold starting an internal combustion engine, there is provided two methods and systems for cold starting an internal combustion engine, and one method and system for shutting down an internal combustion engine. The methods and systems are directed towards: (1) a preheating of a minimum of one thermally activated sensor within an internal combustion engine prior to cold starting of the internal combustion engine; (2) an autocranking of an internal combustion engine while metering fuel into the internal combustion engine and timing ignition within the internal combustion engine such as to reduce internal combustion exhaust emissions when cold starting the internal combustion engine; and (3) a phased shut down of fuel supply control followed by ignition source control when shutting down an internal combustion engine after operating the internal combustion engine.
摘要:
A system and method for controlling an internal combustion engine for low emissions include an inner feedback control loop to control the engine fuel/air ratio with feedback provided by a first exhaust gas sensor and an outer feedback control loop that modifies the fuel/air ratio reference provided to the inner feedback control loop based on feedback signals provided by the first exhaust gas sensor and a second exhaust gas sensor. The fuel/air ratio reference signal controller adapts to the oxygen storage capacity of the catalyst by modeling the catalyst as an integrator with an unknown gain and estimating the catalyst gain based on the first and second exhaust gas sensor signals. Using the estimated catalyst gain, an adaptive controller gain factor is determined and subsequently used to determine the fuel/air ratio reference signal provided to the fuel/air ratio controller of the inner feedback control loop.
摘要:
A system and method for controlling an internal combustion engine for low emissions include an inner feedback control loop to control the engine fuel/air ratio with feedback provided by a first exhaust gas sensor and an outer feedback control loop that modifies a reference fuel/air ratio provided to the inner feedback control loop based on feedback signals provided by a second exhaust gas sensor positioned downstream relative to a portion of the catalyst and a third exhaust gas sensor positioned downstream relative to the second exhaust gas sensor. Catalyst gains are determined by modeling the catalyst as an integrator with an unknown gain and estimating the catalyst gain based on the exhaust gas sensors with the gain used to monitor catalyst performance and/or modify the engine fuel/air ratio.
摘要:
An air/fuel control method for an engine including a NOx sensor in operative relationship to a catalytic converter. The method comprises the steps of providing a base fuel signal related to a quantity of air inducted into the engine and generating a bias signal for biasing the base fuel signal towards a leaner air/fuel ratio. The output of the NOx sensor is monitored to detect a predetermined exhaust gas NOx value representing a predefined NOx conversion efficiency. The base fuel signal is then modified as a function of the bias signal corresponding to the predetermined exhaust gas NOx value to maintain the catalytic converter within a desired efficiency range. In one aspect of the invention, the process of detecting the edge of the NOx conversion efficiency window is executed at predetermined time periods measured by the distance the vehicle traveled, or the elapsed time since last base fuel value modification.