Abstract:
System and methods are described for optimizing exhaust flow rate and temperature during specified operational periods warm-up and keep-warm conditions, by minimizing or maximizing heat flux during those specified operational periods.
Abstract:
This control device is configured to, based on a premise that an operating condition of a plant is a specific operating condition that is defined in advance, search for a virtual current value of a controlled variable for ensuring that a specific state quantity does not conflict with a constraint in the future using a prediction model, set the virtual current value which was found by the search to a target value of the controlled variable, and determine a manipulated variable of the plant so that an actual current value of the controlled variable approaches the target value. Due to this configuration, even if the operating condition of the plant suddenly changes to the specific operating condition, the controlled variable of the plant can be adjusted in advance so that the specific state quantity in the specific operating condition does not conflict with the constraint.
Abstract:
Methods and systems are provided for controlling hybrid vehicle engine operation, where the vehicle engine comprises one or more cylinders dedicated to recirculating exhaust to an intake manifold. In one example, during an engine cold-start event or other event where temperature of one or more exhaust catalysts are below a temperature needed for catalytic activity, fuel injection to the dedicated exhaust gas recirculation cylinder(s) is maintained shut off, while its intake and exhaust valves are maintained activated, thus enabling the dedicated exhaust gas recirculation cylinder(s) to route air to the intake manifold of the engine, resulting in exhaust gas lean of stoichiometry that may serve to heat the catalyst. In this way, during cold start events and other events where temperature of one or more exhaust catalysts are below a temperature for catalytic activity, combustion stability issues may be avoided, and exhaust catalyst(s) rapidly heated, thereby reducing undesired tailpipe emissions.
Abstract:
This disclosure is intended to suppress a noble metal supported by a three-way catalyst from being deteriorated by oxidation with the execution of fuel cut processing in a suitable manner. A control apparatus for a naturally aspirated gasoline engine is provided with a three-way catalyst, a first throttle valve, a second throttle valve arranged in the intake passage at the downstream side of the first throttle valve, an EGR valve, and a controller. When the controller carries out fuel cut processing and the temperature of the three-way catalyst is equal to or higher than a predetermined temperature, the controller introduces the EGR gas into a cylinder of the gasoline engine as intake air by fully closing the first throttle valve and by opening the EGR valve, and further controls an amount of the EGR gas by adjusting the degree of opening of the second throttle valve.
Abstract:
A method for preventing overheating of a diesel particulate filter during regeneration when an engine is idling may include using an electric machine to apply a load to the engine and compensating for the increase in applied load by increasing an engine torque set point to reduce the concentration of Oxygen in the exhaust gas flowing to the diesel particulate filter. Increased engine torque may be provided by adjusting air-fuel ratio by enriching an air-fuel mixture supplied to the engine and the diesel particulate filter. The control may be initiated in response to entering an idle mode during regeneration or in response to a measured or estimated temperature of the diesel particular filter exceeding a threshold or limit. Estimated temperature may be predicted using a soot combustion model.
Abstract:
An exhaust purifying apparatus for an internal combustion engine includes a NOx removing catalyst, an oxidation catalyst, and a controller which is configured to calculate the amount of NOx contained in exhaust gas that has passed through the oxidation catalyst. The controller is configured to execute an abnormality diagnosis process that determines the existence of an abnormality in the NOx removing catalyst if NOx removal efficiency obtained from the amount of NOx is less than or equal to a predetermined value. The controller is configured to execute the abnormality diagnosis process after executing a desorption process that desorbs unburned fuel adsorbed by the NOx removing catalyst if an execution condition of the abnormality diagnosis process is met.
Abstract:
A system according to the principles of the present disclosure includes a boost control module and a temperature estimation module. The boost control module generates a wastegate command signal to control a position of a wastegate and thereby adjust an amount of exhaust gas allowed to bypass a turbine of a turbocharger through the wastegate. The temperature estimation module estimates at least one of a first temperature downstream from the turbine and a second temperature upstream from the turbine based on the wastegate command signal.
Abstract:
A control apparatus for the internal combustion engine has a multicore processor mounted with a plurality of the cores, calculates various tasks regarding an operation of the internal combustion engine, and distributes the tasks to the plurality of the cores respectively to perform a calculation, and a controller that makes the number of cores for use in the calculation smaller while fuel cutoff is carried out than before the fuel cutoff is carried out. The controller selects, as a designated core, at least one of the cores for use in a specific calculation associated with combustion of the internal combustion engine. The controller stops the designated core from being used while fuel cutoff is carried out. As the specific calculation associated with combustion, for example, it is possible to mention a combustion forecasting calculation of a cylinder model, a temperature forecasting calculation of a catalyst temperature estimation model, and a fuel adhesion amount forecasting calculation of a fuel adhesion model.
Abstract:
An engine control system for an engine equipped with a catalyst that purifies exhaust gas includes: a catalyst temperature acquisition section that acquires the temperature of the catalyst; and a control section that controls an engine such that a rate of increase in engine output speed is changed in accordance with the temperature of the catalyst.
Abstract:
Provided is a control device for a multi-cylinder internal combustion engine, including: a supercharger to be driven by exhaust gas energy; and a fuel injection control unit, in which the fuel injection control unit sets a fuel injection amount for one cylinder so that an air/fuel ratio in the one cylinder is richer than a theoretical air/fuel ratio, and exhaust gas exhausted when the one cylinder is in an exhaust stroke and scavenging gas scavenged during a valve overlap period from another cylinder which is in an intake stroke when the one cylinder is in the exhaust stroke are mixed in an exhaust pipe so as to attain an air/fuel ratio facilitating combustion.