Abstract:
Co-culture of isolated human induced pluripotent stem cell (iPSC)-derived endothelial and smooth-muscle progenitor cells results in the formation of cellular spheroids having capillary-like structures (referred to herein as ‘capillary fragments’) at their core. Bioprinting of these spheroids into scaffold-free tissue constructs facilitates the development of microvasculature within the engineered tissue. Methods of using these bioprinted engineered tissues for cell therapy are also disclosed.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent cells into endothelial colony forming cell-like cells (ECFC-like cells) is provided. A purified human cell population of NRP-1+CD31+ ECFC-like cells is provided, wherein at least some of the cells in the population have a high proliferation potential. Therapeutic and test agent screening methods for using the cell populations of the present disclosure are provided.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent stem cells into KDR+NCAM+APLNR+ mesoderm cells and/or SSEA5−KDR+NCAM+APLNR+ mesoderm cells is provided. The disclosed mesoderm cells may be used to generate blood vessels in vivo and/or further differentiated in vitro into endothelial colony forming cell-like cells (ECFC-like cells). Purified human cell populations of KDR+NCAM+APLNR+ mesoderm cells and ECFC-like cells are provided. Test agent screening and therapeutic methods for using the cell populations of the present disclosure are provided.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent stem cells into KDR+NCAM+APLNR+ mesoderm cells and/or SSEA5−KDR+NCAM+APLNR+ mesoderm cells is provided. The disclosed mesoderm cells may be used to generate blood vessels in vivo and/or further differentiated in vitro into endothelial colony forming cell-like cells (ECFC-like cells). Purified human cell populations of KDR+NCAM+APLNR+mesoderm cells and ECFC-like cells are provided. Test agent screening and therapeutic methods for using the cell populations of the present disclosure are provided.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent cells into endothelial colony forming cell-like cells (ECFC-like cells) is provided. A purified human cell population of NRP-1+CD31+ ECFC-like cells is provided, wherein at least some of the cells in the population have a high proliferation potential. Therapeutic and test agent screening methods for using the cell populations of the present disclosure are provided.