Abstract:
Co-culture of isolated human induced pluripotent stem cell (iPSC)-derived endothelial and smooth-muscle progenitor cells results in the formation of cellular spheroids having capillary-like structures (referred to herein as ‘capillary fragments’) at their core. Bioprinting of these spheroids into scaffold-free tissue constructs facilitates the development of microvasculature within the engineered tissue. Methods of using these bioprinted engineered tissues for cell therapy are also disclosed.
Abstract:
A hierarchy of endothelial colony forming cells (EPCs) was identified from mammalian cord blood, umbilical vein and aorta. A newly isolated cell named high proliferative potential—endothelial colony forming cell (HPP-ECFC) was isolated and characterized. Single cell assays were developed that test the proliferative and clonogenic potential of endothelial cells derived from cord blood, or from HUVECs and HAECs. EPCs were found to reside in vessel walls. Use of a feeder layer of cells derived from high proliferative potential-endothelial colony forming cells (HPP-ECPCS) from human umbilical cord blood, stimulates growth and survival of repopulating hematopoietic stem and progenitor cells. Stimulation of growth and survival was determined by increased numbers of progenitor cells in in vitro cultures and increased levels of human cell engraftment in the NOD/SCID immunodeficient mouse transplant system.
Abstract:
Materials and methods are disclosed for controlling vasculogenesis using building blocks of a collagen matrix and endothelial colony forming cells (ECFC). The building blocks may be isolated by fractionating an acid soluble Type I collagen. The building blocks comprising monomers and/or oligomers may be recombined in desired ratios to alter the matrix microenvironment and to influence ECFC behavior.
Abstract:
Materials and methods are disclosed for controlling vasculogenesis using building blocks of a collagen matrix and endothelial colony forming cells (ECFC). The building blocks may be isolated by fractionating an acid soluble Type I collagen. The building blocks comprising monomers and/or oligomers may be recombined in desired ratios to alter the matrix microenvironment and to influence ECFC behavior.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent stem cells into KDR+NCAM+APLNR+ mesoderm cells and/or SSEA5−KDR+NCAM+APLNR+ mesoderm cells is provided. The disclosed mesoderm cells may be used to generate blood vessels in vivo and/or further differentiated in vitro into endothelial colony forming cell-like cells (ECFC-like cells). Purified human cell populations of KDR+NCAM+APLNR+ mesoderm cells and ECFC-like cells are provided. Test agent screening and therapeutic methods for using the cell populations of the present disclosure are provided.
Abstract:
The present disclosure provides compositions and methods for the treatment or prophylaxis of a perfusion disorder, such as ischemia and/or reperfusion injury, in a subject's organ, tissue or extremity by preserving or improving endothelial function, reducing vascular injury, and/or promoting vascular repair. The disclosed compositions comprise endothelial colony-forming cells or a serum-free composition comprising chemically defined media conditioned by endothelial colony-forming cells.
Abstract:
A hierarchy of endothelial colony forming cells (EPCs) was identified from mammalian cord blood, umbilical vein and aorta. A newly isolated cell named high proliferative potential endothelial colony forming cell (HPP-ECFC) was isolated and characterized. Single cell assays were developed that test the proliferative and clonogenic potential of endothelial cells derived from cord blood, or from HUVECs and HAECs. EPCs were found to reside in vessel walls. Use of a feeder layer of cells derived from high proliferative potential-endothelial colony forming cells (HPP-ECPCS) from human umbilical cord blood, stimulates growth and survival of repopulating hematopoietic stem and progenitor cells. Stimulation of growth and survival was determined by increased numbers of progenitor cells in in vitro cultures and increased levels of human cell engraftment in the NOD/SCID immunodeficient mouse transplant system.
Abstract:
The present disclosure relates generally to methods and compositions useful in cell and tissue biology and therapeutics. In particular, an in vitro method for differentiating pluripotent stem cells into KDR+NCAM+APLNR+ mesoderm cells and/or SSEA5−KDR+NCAM+APLNR+ mesoderm cells is provided. The disclosed mesoderm cells may be used to generate blood vessels in vivo and/or further differentiated in vitro into endothelial colony forming cell-like cells (ECFC-like cells). Purified human cell populations of KDR+NCAM+APLNR+mesoderm cells and ECFC-like cells are provided. Test agent screening and therapeutic methods for using the cell populations of the present disclosure are provided.
Abstract:
A hierarchy of endothelial colony forming cells (EPCs) was identified from mammalian cord blood, umbilical vein and aorta. A newly isolated cell named high proliferative potential-endothelial colony forming cell (HPP-ECFC) was isolated and characterized. Single cell assays were developed that test the proliferative and clonogenic potential of endothelial cells derived from cord blood, or from HUVECs and HAECs. EPCs were found to reside in vessel walls. Use of a feeder layer of cells derived from high proliferative potential-endothelial colony forming cells (HPP-ECPCS) from human umbilical cord blood, stimulates growth and survival of repopulating hematopoietic stem and progenitor cells. Stimulation of growth and survival was determined by increased numbers of progenitor cells in in vitro cultures and increased levels of human cell engraftment in the NOD/SCID immunodeficient mouse transplant system.
Abstract:
A hierarchy of endothelial colony forming cells (EPCs) was identified from mammalian cord blood, umbilical vein and aorta. A newly isolated cell named high proliferative potential-endothelial colony forming cell (HPP-ECFC) was isolated and characterized. Single cell assays were developed that test the proliferative and clonogenic potential of endothelial cells derived from cord blood, or from HUVECs and HAECs. EPCs were found to reside in vessel walls. Use of a feeder layer of cells derived from high proliferative potential-endothelial colony forming cells (HPP-ECPCS) from human umbilical cord blood, stimulates growth and survival of repopulating hematopoietic stem and progenitor cells. Stimulation of growth and survival was determined by increased numbers of progenitor cells in in vitro cultures and increased levels of human cell engraftment in the NOD/SCID immunodeficient mouse transplant system.