Abstract:
A circuit arrangement for determining m check bits c1, . . . , cm for k data bits u1, . . . , uk is provided, wherein the circuit arrangement includes a first subcircuit and a second subcircuit. The first subcircuit has k binary inputs for inputting the k data bits u=u1, . . . , uk and M binary outputs for outputting M binary intermediate values z1, . . . , zM determined from the data bits. The second subcircuit is configured to transform the intermediate values z1, . . . , zM into the check bits c1, . . . , cm.
Abstract:
A circuit arrangement for detecting memory errors is provided. The circuit arrangement comprises a memory (11) and an error detection circuit (12). The circuit arrangement is designed to store a code word of an error detection code (C) or a code word that is inverted in a subset (M) of bits in the memory (11) at a memory location and to read out a data word from the memory (11) from the memory location. The error detection circuit (12) is designed, for the case where a control signal present assumes a first value, to indicate a memory error if the data word is not a code word of the error detection code (C). Furthermore, the error detection circuit (12) is designed, for the case where the control signal present assumes a second value, which is different from the first value, and the code word that is inverted in the subset (M) of bits was written to the memory location, to determine on the basis of the data word read out from the memory (11) whether a memory error is present if the code word that is inverted in the subset (M) of bits is not a code word of the error detection code (C).
Abstract:
A circuit arrangement for determining m check bits c1, . . . , cm for k data bits u1, . . . , uk is provided, wherein the circuit arrangement includes a first subcircuit and a second subcircuit. The first subcircuit has k binary inputs for inputting the k data bits u=u1, . . . , uk and M binary outputs for outputting M binary intermediate values z1, . . . , zM determined from the data bits. The second subcircuit is configured to transform the intermediate values z1, . . . , zM into the check bits c1, . . . , cm.
Abstract:
A circuit arrangement for detecting memory errors is provided. The circuit arrangement comprises a memory (11) and an error detection circuit (12). The circuit arrangement is designed to store a code word of an error detection code (C) or a code word that is inverted in a subset (M) of bits in the memory (11) at a memory location and to read out a data word from the memory (11) from the memory location. The error detection circuit (12) is designed, for the case where a control signal present assumes a first value, to indicate a memory error if the data word is not a code word of the error detection code (C). Furthermore, the error detection circuit (12) is designed, for the case where the control signal present assumes a second value, which is different from the first value, and the code word that is inverted in the subset (M) of bits was written to the memory location, to determine on the basis of the data word read out from the memory (11) whether a memory error is present if the code word that is inverted in the subset (M) of bits is not a code word of the error detection code (C).