Abstract:
Disclosed is a circuit arrangement for generating a drive signal for a transistor. In one embodiment, the circuit arrangement includes a control circuit that receives a switching signal, a driver circuit that outputs a drive signal, and at least one transmission channel. The control circuit transmits, depending on the switching signal for each switching operation of the transistor, switching information and switching parameter information via the transmission channel to the driver circuit. The driver circuit generates the drive signal depending on the switching information and depending on the switching parameter information.
Abstract:
Disclosed is a circuit arrangement for generating a drive signal for a transistor. In one embodiment, the circuit arrangement includes a control circuit that receives a switching signal, a driver circuit that outputs a drive signal, and at least one transmission channel. The control circuit transmits, depending on the switching signal for each switching operation of the transistor, switching information and switching parameter information via the transmission channel to the driver circuit. The driver circuit generates the drive signal depending on the switching information and depending on the switching parameter information.
Abstract:
A circuit for a semiconductor switching element including a transformer. One embodiment provides a first voltage supply circuit having a first oscillator. A first transformer is connected downstream of the first oscillator. A first accumulation circuit for providing a first supply voltage is connected downstream of the first transformer. A driver circuit having input terminals for feeding in the first supply voltage and having output terminals for providing a drive voltage for the semiconductor switching element, designed to generate the drive voltage for the semiconductor switching element at least from the first supply voltage.
Abstract:
A circuit for a semiconductor switching element including a transformer. One embodiment provides a first voltage supply circuit having a first oscillator. A first transformer is connected downstream of the first oscillator. A first accumulation circuit for providing a first supply voltage is connected downstream of the first transformer. A driver circuit having input terminals for feeding in the first supply voltage and having output terminals for providing a drive voltage for the semiconductor switching element, designed to generate the drive voltage for the semiconductor switching element at least from the first supply voltage.
Abstract:
Disclosed is a circuit arrangement for generating a drive signal for a transistor. In one embodiment, the circuit arrangement includes a control circuit that receives a switching signal, a driver circuit that outputs a drive signal, and at least one transmission channel. The control circuit transmits, depending on the switching signal for each switching operation of the transistor, switching information and switching parameter information via the transmission channel to the driver circuit. The driver circuit generates the drive signal depending on the switching information and depending on the switching parameter information.
Abstract:
Disclosed is a circuit arrangement for generating a drive signal for a transistor. In one embodiment, the circuit arrangement includes a control circuit that receives a switching signal, a driver circuit that outputs a drive signal, and at least one transmission channel. The control circuit transmits, depending on the switching signal for each switching operation of the transistor, switching information and switching parameter information via the transmission channel to the driver circuit. The driver circuit generates the drive signal depending on the switching information and depending on the switching parameter information.
Abstract:
An embodiment of the invention relates to an apparatus including a magnetic device and a related method. A multilayer substrate is constructed with a winding formed in a metallic layer, an electrically insulating layer above the metallic layer, and a via formed in the electrically insulating layer to couple the winding to a circuit element positioned on the multilayer substrate. A depression is formed in the multilayer substrate, and a polymer solution, preferably an epoxy, containing a ferromagnetic component such as nanocrystaline nickel zinc ferrite is deposited within a mold positioned on a surface of the multilayer substrate above the winding and in the depression. An integrated circuit electrically coupled to the winding may be located on the multilayer substrate. The multilayer substrate may be a semiconductor substrate or a printed wiring board, and the circuit element may be an integrated circuit formed on the multilayer substrate.