Abstract:
A method for estimating properties of porous media, such as fine pore or tight rocks, is provided. The method comprises digital image scanning of sequential sub-samples of porous media at progressively higher resolution to systematically identify sub-sections of interest within the original sample and then estimate properties of the porous media. The resulting properties of the porous media then can be optionally upscaled to further estimate the properties of larger volumes of the porous media such as rock facies or subterranean reservoirs. A system operable for conducting the method also is provided.
Abstract:
Methods and systems for conditioning expanded porosity, including a method that includes creating a disconnected pore structure by reducing the pore sizes of a rock sample's scanned image, identifying expanded pores within the rock sample and generating an expanded pore image from the expanded pores. The method further includes combining the expanded pore image with the scanned image to create an expansion mask, generating a grain conditioning volume based on at least one unexpanded region of the rock sample, combining the grain conditioning volume with the expansion mask to generate a fill volume image, combining the fill volume image with the scanned image to create an unexpanded volume image, and generating and presenting to a user a formation log using a model generated based upon the unexpanded volume image.
Abstract:
A method for estimating properties of porous media, such as fine pore or tight rocks, is provided. The method comprises digital image scanning of sequential sub-samples of porous media at progressively higher resolution to systematically identify sub-sections of interest within the original sample and then estimate properties of the porous media. The resulting properties of the porous media then can be optionally upscaled to further estimate the properties of larger volumes of the porous media such as rock facies or subterranean reservoirs. A system operable for conducting the method also is provided.
Abstract:
A method for increasing the accuracy of a target property value derived from a rock sample is described in which the sample is scanned to obtain a three-dimensional tomographic digital image which can be processed to pore space and solid material phases through a segmentation process. A process is used which revises the segmented volume, e.g., by increasing pore space connectivity, in a manner affecting the target property value that would be derived. Another described method increases the accuracy with which a segmented volume represents a material sample having structure not adequately resolved in an original three-dimensional tomographic digital image. Further, a system for performing the processes, and a segmented digital volume which more accurately represents a sample of a porous media, are described.
Abstract:
The present invention relates in part to a method for generating a multi-dimensional image of a sample which combines different image capturing modalities with data analysis capability for identifying and integrating the higher accuracy image features captured by each respective modality to yield reconciled image data of higher accuracy and consistency. A system which can be used to perform the method also is included.
Abstract:
Methods and systems for conditioning expanded porosity, including a method that includes creating a disconnected pore structure by reducing the pore sizes of a rock sample's scanned image, identifying expanded pores within the rock sample and generating an expanded pore image from the expanded pores. The method further includes combining the expanded pore image with the scanned image to create an expansion mask, generating a grain conditioning volume based on at least one unexpanded region of the rock sample, combining the grain conditioning volume with the expansion mask to generate a fill volume image, combining the fill volume image with the scanned image to create an unexpanded volume image, and generating and presenting to a user a formation log using a model generated based upon the unexpanded volume image.
Abstract:
The present invention relates in part to a method for generating a multi-dimensional image of a sample which combines different image capturing modalities with data analysis capability for identifying and integrating the higher accuracy image features captured by each respective modality to yield reconciled image data of higher accuracy and consistency. A system which can be used to perform the method also is included.
Abstract:
A method for increasing the accuracy of a target property value derived from a rock sample is described in which the sample is scanned to obtain a three-dimensional tomographic digital image which can be processed to pore space and solid material phases through a segmentation process. A process is used which revises the segmented volume, e.g., by increasing pore space connectivity, in a manner affecting the target property value that would be derived. Another described method increases the accuracy with which a segmented volume represents a material sample having structure not adequately resolved in an original three-dimensional tomographic digital image. Further, a system for performing the processes, and a segmented digital volume which more accurately represents a sample of a porous media, are described.
Abstract:
A method for increasing the accuracy of a target property value derived from a rock sample is described in which the sample is scanned to obtain a three-dimensional tomographic digital image which can be processed to pore space and solid material phases through a segmentation process. A process is used which revises the segmented volume, e.g., by increasing pore space connectivity, in a manner affecting the target property value that would be derived. Another described method increases the accuracy with which a segmented volume represents a material sample having structure not adequately resolved in an original three-dimensional tomographic digital image. Further, a system for performing the processes, and a segmented digital volume which more accurately represents a sample of a porous media, are described.
Abstract:
A method for increasing the accuracy of a target property value derived from a rock sample is described in which the sample is scanned to obtain a three-dimensional tomographic digital image which can be processed to pore space and solid material phases through a segmentation process. A process is used which revises the segmented volume, e.g., by increasing pore space connectivity, in a manner affecting the target property value that would be derived. Another described method increases the accuracy with which a segmented volume represents a material sample having structure not adequately resolved in an original three-dimensional tomographic digital image. Further, a system for performing the processes, and a segmented digital volume which more accurately represents a sample of a porous media, are described.