Abstract:
An electronic device includes a substrate and a timing control module. The timing control module transmits a plurality of timing control signals to the substrate. The timing control module includes an overcurrent protection circuit for detecting the timing control signals. The overcurrent protection circuit includes a subtractor and a comparator electrically connected to the substractor. The timing control signals include a first timing control signal and a second timing control signal. The subtractor calculates a first current difference value between a draw current value of the first timing control signal and a draw current value of the second timing control signal. The comparator compares the first current difference value with a first threshold and, when the first current difference is greater than or equal to the first threshold value, the overcurrent protection circuit performs an overcurrent protection mechanism.
Abstract:
A method for protecting a circuit includes steps of: providing a first current source connected to a capacitor of the circuit through a second switch; providing a detection and control unit for turning on the second switch at a first time, and let the first current source to charge the capacitor; detecting a voltage value of the capacitor by the detection and control unit; wherein when the voltage value is greater than or equal to a reference voltage value, the detection and control unit turns off the second switch and turns on a first switch of the circuit, and when the voltage value is lower than the reference voltage value, the detection and control unit turns off the second switch and continue turns off the first switch.
Abstract:
An electronic device includes a circuit board, a first level shift IC and a second level shift IC. The first level shift IC and the second level shift IC are disposed on the circuit board. The first level shift IC and the second level shift IC each include a plurality of clock signal output pins and a common pin, and each clock signal output pin outputs a clock signal, wherein the common pin of the first level shift IC is electrically connected to the common pin of the second level shift IC through a conductive wire on the circuit board.
Abstract:
A backlight module is provided, and includes: a plurality of LED strings, each of which is formed from a plurality of LEDs connected in series and has an LED string current flowing through it, and a dimming controller which controls the duty cycle of a voltage pulse wave supplied to each of the LED strings, wherein the LED string current of each of the LED strings multiplied by the duty cycle of the voltage pulse wave for the same LED string equals a value, and the error between the values of the LED strings is within 6% of any of the values.
Abstract:
A gate pulse modulation waveform-shaping circuit includes an input terminal, an output pair, and a gate pulse modulation waveform-shaping control circuit. The input terminal receives a control signal. The output pair is connected to a scan line for outputting a gate output voltage. The gate pulse modulation waveform-shaping control circuit is connected to the output pair for adjusting a voltage waveform on the scan line. The gate pulse modulation waveform-shaping control circuit is based on the control signal to use a time interval or fixed discharge voltage to generate a desired delay for adjusting a discharge slope thereby generating different discharge time on the scan line, so that the gate output voltage has a voltage waveform including at least two waveform segments each with a non-zero sliding slope and at least two waveform segments each with a zero slope.