Abstract:
A display apparatus includes a pixel array, an optical modulator, a controller, and at least one memory device storing a frame memory. The optical modulator modulates the light emitted from the pixel array to corresponding angles. The controller generates images of a scene with different lighting profiles corresponding to different viewing angles according to information stored in the frame memory. The frame memory stores color information and material information of objects in the scene. The display apparatus displays the images through the first pixel array at the same time.
Abstract:
A liquid crystal (LCD) panel is provided. The LCD panel has a plurality of pixels. One of the pixels includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first electrode layer and a first alignment layer covering the first electrode layer. The second substrate includes a second electrode layer and a second alignment layer covering the second electrode layer. The second electrode layer has a first electrode pattern and a second electrode pattern. The first electrode pattern and the second electrode pattern are separated. The first electrode pattern has a convex edge. The second electrode pattern has a concave edge. The shape of the convex edge is complementary to the shape of the concave edge. The liquid crystal layer is disposed between the first substrate and the second substrate.
Abstract:
A transparent electrode layer includes plural touch units. Each of the touch units includes a sensing part and a wiring part. The sensing part has at least one dummy slit. The wiring part is electrically connected to the sensing part, and includes at least one conductor line and at least one slit. The at least one conductor line and the at least one slit are alternately formed in the wiring part. A density ratio, in a range between 0.5 and 2, is determined by a sensing part density parameter and a wiring part density parameter.
Abstract:
A touch display device includes a substrate. The substrate includes a display area, a non-display area, a first touch area, and a non-touch area. A first touch grid is disposed within the first touch area. A second touch grid is electrically isolated from the first touch grid and disposed within the first touch area. A first wire is disposed within the non-touch area and electrically connected to the first touch grid. A second wire is disposed within the non-touch area and electrically connected to the second touch grid. The first wire and the second wire are staggered and are electrically isolated from each other. The second wire includes at least two separate conductive units and at least one bridge wire connected to the at least two separate conductive units. An insulating layer is disposed between the first wire and the second wire.
Abstract:
A mirror display device, which includes: a display panel; a first polarizer disposed on the display panel; and an optical structure disposed on the first polarizer. The optical structure includes: a first polarization conversion layer; and a second polarization conversion layer or a reflection layer, wherein the first polarization conversion layer is disposed between the first polarizer and the second polarization conversion layer or the reflection layer; wherein a sum of a first reflectance and a first transmittance of the optical structure is greater than 100% and less than 150%, in which the first reflectance is referred to a percentage of external light irradiating into the mirror display device and reflected by the optical structure, and the first transmittance is referred to a percentage of light passing through a first polarizer and then irradiating into and passing through the optical structure.
Abstract:
A touch display device comprises a first substrate, a second substrate disposed opposite the first substrate, a plurality of touch electrode patterns and a first polarization element. The touch electrode patterns include a plurality of touch electrodes and wires. The wires are electrically connected with the touch electrodes, disposed on the first substrate and arranged along a first direction. The first polarization element is disposed on the first substrate and has a first absorption axis. One of the wires is formed by the connection of a plurality of wire segments, and one of the wire segments is formed by the connection of a plurality of segments. Each of the segments forms a vector by towards the same side, the vectors have a sum vector, and the included angle between the sum vector and the first absorption axis is greater than 0° and less than or equal to 20°.
Abstract:
A driving method applied in a display is provided. The display includes M scan lines, N data lines, M control lines and M×N pixels. M and N are natural numbers greater than 1. The driving method includes the following steps of: driving M scan lines in M scan periods respectively; providing a data voltage to each of the N data lines in each of the M scan periods; driving the first to the (M−K)th control lines in the (K+1)th to the Mth scan periods respectively to turn on the discharge switch in each of the pixels on the first to the (M−K)th control lines; and driving the second to the Kth control lines to trigger level shifting events in the first to the (K−1)th scan periods respectively, so that level shifting events are triggered on a scan and control lines in the first to the (K−1)th scan periods.
Abstract:
A transparent electrode layer includes plural touch units. Each of the touch units includes a sensing part and a wiring part. The sensing part has at least one dummy slit. The wiring part is electrically connected to the sensing part, and includes at least one conductor line and at least one slit. The at least one conductor line and the at least one slit are alternately formed in the wiring part. A density ratio, in a range between 0.5 and 2, is determined by a sensing part density parameter and a wiring part density parameter.
Abstract:
A driving method applied in a display is provided. The display includes M scan lines, N data lines, M control lines and M×N pixels. M and N are natural numbers greater than 1. The driving method includes the following steps of: driving M scan lines in M scan periods respectively; providing a data voltage to each of the N data lines in each of the M scan periods; driving the first to the (M−K)th control lines in the (K+1)th to the Mth scan periods respectively to turn on the discharge switch in each of the pixels on the first to the (M−K)th control lines; and driving the second to the Kth control lines to trigger level shifting events in the first to the (K−1)th scan periods respectively, so that level shifting events are triggered on a scan and control lines in the first to the (K−1)th scan periods.
Abstract:
An image apparatus includes a pixel array, an optical modulator, a controller, and a memory device storing information of a frame memory and information of a view map. The optical modulator modulates the light emitted from the pixel array to different viewing angles. The controller generates images of a scene with different lighting profiles corresponding to different viewing angles according to the information of the frame memory and the information of the view map.