Abstract:
A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A method and apparatus may be used for exchanging measurements in wireless communications. The apparatus may receive a request. The request may be a measurement request, and may include a request for a measurement of a parameter. The apparatus may transmit a report. The report may be a measurement report, and may include the requested measurement of a parameter. The apparatus may store the requested measurement of the parameter in a management information base (MIB).
Abstract:
A method and apparatus may be used for exchanging measurements in wireless communications. The apparatus may receive a request. The request may be a measurement request, and may include a request for a measurement of a parameter. The apparatus may transmit a report. The report may be a measurement report, and may include the requested measurement of a parameter. The apparatus may store the requested measurement of the parameter in a management information base (MIB).
Abstract:
A method and apparatus may be used for exchanging measurements in wireless communications. The apparatus may receive a request. The request may be a measurement request, and may include a request for a measurement of a parameter. The apparatus may transmit a report. The report may be a measurement report, and may include the requested measurement of a parameter. The apparatus may store the requested measurement of the parameter in a management information base (MIB).
Abstract:
Embodiments include a method and apparatus for processing a downlink shared channel. In one embodiment, a Node-B includes circuitry configured to process control information for a user equipment (UE) and to produce an N bit cyclic redundancy check (CRC) associated with the control information. The Node-B includes circuitry configured to modulo 2 add the N bit CRC with an N bit UE identity to produce an N bit field, wherein the UE identity is any one of a plurality of UE identities associated with the UE. The Node-B includes circuitry configured to transmit a wireless signal of a control channel, wherein the wireless signal comprises the N bit field and the control information.
Abstract:
A method and apparatus is disclosed wherein a user equipment (UE) receives control information on a first channel and uses the control information to process a second channel.
Abstract:
A method and apparatus is disclosed in which a user equipment (UE) receives and processes control information received on a first channel. In accordance with a particular embodiment, a use equipment (UI) having a user equipment processor coupled with user equipment circuitry includes means for receiving, via the user equipment circuitry, a wireless signal of a control channel; in which the wireless signal includes both (i) an N bit field and (ii) control information, the N bit field having been generated using the control information and having therein an N bit cyclic redundancy check (CRC) calculated using at least an N bit user equipment identity for the UE; and in which the UE further includes means for determining, via the user equipment circuitry, that the N bit CRC is correct using the N bit user equipment identity; and means for processing, via the user equipment circuitry, the control information upon the user equipment circuitry determining that the N bit CRC is correct.
Abstract:
A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A received channel power indicator (RCPI) value is used as a measure of the received RF power in the selected channel, measured at the antenna connector. This parameter is a measure by the PHY sublayer of the received RF power in the channel measured over the PLCP preamble and over the entire received frame. RCPI is a monotonically increasing, logarithmic function of the received power level defined in dBm.