Abstract:
Techniques for device power management for wireless local networks are described. An apparatus may comprise a network access component for execution by circuitry to automatically determine whether a wireless device can access a wireless network based on security credentials of the wireless device, and generate a network status signal when the wireless device can access a wireless network. The apparatus may comprise a power interface component for execution by circuitry to send control directives to manage various power states of the wireless device based on the network status signal. Other embodiments are described and claimed.
Abstract:
Systems, apparatuses, and methods are directed to a first peer-to-peer (P2P) enabled device configured to wirelessly transmit a first request message and a second P2P-enabled device configured to wirelessly receive the first request message. In response to receiving the first request message, the second P2P-enabled device wirelessly transmits a second request message to the first P2P-enabled device, and if the first request message is rejected by the second P2P-enabled device, the second request message includes status control information indicating that the first request message is rejected. In addition, if the first request message is to be cancelled, the first P2P-enabled device transmits another request message to the second P2P-enabled device with status control information indicating that the first request message has been cancelled.
Abstract:
Systems, apparatuses, and methods are directed to a first peer-to-peer (P2P) enabled device configured to wirelessly transmit a first request message and a second P2P-enabled device configured to wirelessly receive the first request message. In response to receiving the first request message, the second P2P-enabled device wirelessly transmits a second request message to the first P2P-enabled device, and if the first request message is rejected by the second P2P-enabled device, the second request message includes status control information indicating that the first request message is rejected. In addition, if the first request message is to be cancelled, the first P2P-enabled device transmits another request message to the second P2P-enabled device with status control information indicating that the first request message has been cancelled.
Abstract:
Systems, apparatuses, and methods are directed to a first peer-to-peer (P2P) enabled device configured to wirelessly transmit a first request message and a second P2P-enabled device configured to wirelessly receive the first request message. In response to receiving the first request message, the second P2P-enabled device wirelessly transmits a second request message to the first P2P-enabled device, and if the first request message is rejected by the second P2P-enabled device, the second request message includes status control information indicating that the first request message is rejected. In addition, if the first request message is to be cancelled, the first P2P-enabled device transmits another request message to the second P2P enabled device with status control information indicating that the first request message has been cancelled.
Abstract:
Systems, apparatuses, and methods are directed to a first peer-to-peer (P2P) enabled device configured to wirelessly transmit a first request message and a second P2P-enabled device configured to wirelessly receive the first request message. In response to receiving the first request message, the second P2P-enabled device wirelessly transmits a second request message to the first P2P-enabled device, and if the first request message is rejected by the second P2P-enabled device, the second request message includes status control information indicating that the first request message is rejected. In addition, if the first request message is to be cancelled, the first P2P-enabled device transmits another request message to the second P2P-enabled device with status control information indicating that the first request message has been cancelled.
Abstract:
Examples are disclosed for switching between wireless networks. In some examples a method for switching between wireless network may comprise creating a virtual wireless adapter, maintaining a first wireless connection with a first wireless network, initiating a second wireless connection with a second wireless network using the virtual wireless adapter, disconnecting the first wireless connection with the first wireless network, and establishing the second wireless connection with the second wireless network. Other examples are described and claimed.