Abstract:
A method and apparatus are described for supporting advanced distributed and dynamic mobility management (DMM) features with multiple flows anchored at different gateways. A software defined networking (SDN) controller may support the attachment of a wireless transmit/receive unit (WTRU) to a network. The SDN controller may receive initial attachment signaling from a point of attachment (PoA) indicating that the WTRU initially attached to the network. The anchor node may be a distributed gateway (D-GW). The SDN controller may select an anchor node to serve the WTRU Internet protocol (IP) flow traffic. Initial attachment signaling, intra-anchor node handover, inter-anchor node handover, new anchor node allocation and inter-domain mobility across virtualized operators are also described.
Abstract:
Methods, apparatus and systems may support distributed and dynamic mobility management features, including for nodes, functions and interfaces. A distributed gateway (D-GW), which may be a logical entity, may implement functionality of a PDN gateway (PGW) along with additional functionality that may support distributed mobility management (DMM). Additionally, methods, apparatus, and systems may support detecting and discovering capabilities that may be used to support dynamic IP mobility features on mobile node and networks.
Abstract:
A method and apparatus are described for supporting dynamic and distributed mobility management (DMM). A wireless transmit/receive unit (WTRU) may attach to a first distributed gateway (D-GW), and configure a first Internet protocol (IP) address based on a prefix locally provided by the first D-GW. The WTRU may move and attach to a second D-GW while carrying out an on-going communication session with a correspondent node (CN). The WTRU may configure a second IP address based on a prefix provided by the second D-GW. The WTRU may use the first IP address for carrying out the on-going session and use the second IP address for a new communication session.
Abstract:
A method and apparatus are described for supporting dynamic and distributed mobility management (DMM). A wireless transmit/receive unit (WTRU) may attach to a first distributed gateway (D-GW), and configure a first Internet protocol (IP) address based on a prefix locally provided by the first D-GW. The WTRU may move and attach to a second D-GW while carrying out an on-going communication session with a correspondent node (CN). The WTRU may configure a second IP address based on a prefix provided by the second D-GW. The WTRU may use the first IP address for carrying out the on-going session and use the second IP address for a new communication session.
Abstract:
A method performed by a WTRU may comprise receiving context information from infrastructure equipment and selecting a SLAP quadrant for MAC address allocation. The selecting may be based on the context information received from the infrastructure equipment, which may be a bootstrapping server for the WTRU. The method may further comprise transmitting, to a DHCP server, a DHCP message indicating the selected SLAP quadrant. In response to the transmitted DHCP message, a MAC address may be received and configured to the WTRU. Context information includes, but is not limited to, a number of nodes in a network, a type of network deployment, a type of network, a mobility configuration, a type of device management, a battery lifetime, a location or privacy configuration.
Abstract:
A method and apparatus are described for supporting advanced distributed and dynamic mobility management (DMM) features with multiple flows anchored at different gateways. A software defined networking (SDN) controller may support the attachment of a wireless transmit/receive unit (WTRU) to a network. The SDN controller may receive initial attachment signaling from a point of attachment (PoA) indicating that the WTRU initially attached to the network. The anchor node may be a distributed gateway (D-GW). The SDN controller may select an anchor node to serve the WTRU Internet protocol (IP) flow traffic. Initial attachment signaling, intra-anchor node handover, inter-anchor node handover, new anchor node allocation and inter-domain mobility across virtualized operators are also described.
Abstract:
A method and apparatus are described for supporting advanced distributed and dynamic mobility management (DMM) features with multiple flows anchored at different gateways. A software defined networking (SDN) controller may support the attachment of a wireless transmit/receive unit (WTRU) to a network. The SDN controller may receive initial attachment signaling from a point of attachment (PoA) indicating that the WTRU initially attached to the network. The anchor node may be a distributed gateway (D-GW). The SDN controller may select an anchor node to serve the WTRU Internet protocol (IP) flow traffic. Initial attachment signaling, intra-anchor node handover, inter-anchor node handover, new anchor node allocation and inter-domain mobility across virtualized operators are also described.
Abstract:
Methods, apparatus and systems may support distributed and dynamic mobility management features, including for nodes, functions and interfaces. A distributed gateway (D-GW), which may be a logical entity, may implement functionality of a PDN gateway (PGW) along with additional functionality that may support distributed mobility management (DMM). Additionally, methods, apparatus, and systems may support detecting and discovering capabilities that may be used to support dynamic IP mobility features on mobile node and networks.
Abstract:
Systems, methods, and instrumentalities are described for a wireless transmit/receive unit (WTRU), comprising a memory, and a processor to execute instructions from the memory, wherein the processor is configured to access a non-3rd Generation Partnership Project (3GPP) Access Network (AN), establish a link with a Non-3GPP Interworking Function (N3IWF) via the non-3GPP AN, request information from the N3IWF about network slicing capabilities of a 3GPP Radio Access Network (RAN), receive information from the N3IWF about network slicing capabilities of the 3GPP RAN, and determine whether to register with the 3GPP RAN based upon the network slicing capabilities of the 3GPP RAN. Systems, methods, and instrumentalities are described for sending information about network slicing capabilities of a 3GPP RAN to a N3IWF, establishing a link between a WTRU operating on a non-3GPP AN and the N3IWF via the non-3GPP AN, and sending information from the N3IWF to the WTRU about network slicing capabilities of the 3GPP RAN.
Abstract:
Procedures, methods, architectures, apparatuses, systems, devices, and computer program products are disclosed for Multi-access Edge Computing, MEC, applications on Wireless Transmit-Receive Units, WTRUs. WTRUs hosting constrained, or limited capability, MEC resources according to embodiments, may advertise MEC capabilities to other WTRUs or to a full MEC system. WTRUs may request instantiation, deletion of MEC applications instantiated for their benefit on other WTRUs hosting constrained MEC resources, or may request migration of a MEC application from one WTRU to another WTRU, for example to ensure Quality of Service, QoS, requirements for the MEC application.