Abstract:
Apparatus employed by a base station wherein a plurality of channels are received as a received signal. Each channel is associated with a code. For each of the plurality of channels, others of the plurality of channels are subtracted from the received signal and a result of that subtracting is despread as data for that channel.
Abstract:
A receiver receives signals and noise over a frequency spectrum of a desired received signal. The desired received signal is spread using code division multiple access. The received signals and noise are demodulated to produce a demodulated signal. The demodulated signal is despread using a code uncorrelated with a code associated with the desired received signal. A power level of the despread demodulated signal is measured as an estimate of the noise level of the frequency spectrum.
Abstract:
Apparatus employed by a remote unit wherein a plurality of channels are received as a received signal. Each channel is associated with a code. For each of the plurality of channels, others of the plurality of channels are subtracted from the received signal and a result of that subtracting is despread as data for that channel.
Abstract:
A receiver receives signals and noise over a frequency spectrum of a desired received signal. The desired received signal is spread using code division multiple access. The received signals and noise are demodulated to produce a demodulated signal. The demodulated signal is despread using a code uncorrelated with a code associated with the desired received signal. A power level of the despread demodulated signal is measured as an estimate of the noise level of the frequency spectrum.
Abstract:
A receiver receives signals and noise over a frequency spectrum of a desired received signal. The desired received signal is spread using code division multiple access. The received signals and noise are demodulated to produce a demodulated signal. The demodulated signal is despread using a code uncorrelated with a code associated with the desired received signal. A power level of the despread demodulated signal is measured as an estimate of the noise level of the frequency spectrum.
Abstract:
A subscriber unit for use in a multiple access spread-spectrum communication system includes a spread spectrum radio interface, responsive to a rate function signal from a base station, and first and second despreaders. The base station assigns the rate function spread-spectrum message channels and the first despreader recovers and modifies an information signal one of the spread spectrum message channels. The information channel mode is then modified for processing by the second despreader, with the second despreader supporting a different information signal rate. The subscriber unit has a capability of communicating with a dynamically changing a transmission rate of an information signal which includes multiple spread spectrum message channels. The system includes a closed loop power control system for maintaining a minimum system transmit power level for a radio carrier station and the subscriber units, and system capacity management for maintaining a maximum number of active subscriber units for improved system performance.
Abstract:
A method employed by a remote unit wherein a plurality of channels are received as a received signal. Each channel is associated with a code. For each of the plurality of channels, others of the plurality of channels are subtracted from the received signal and a result of that subtracting is despread as data for that channel.
Abstract:
A method employed by a base station wherein a plurality of channels are received as a received signal. Each channel is associated with a code. For each of the plurality of channels, others of the plurality of channels are subtracted from the received signal and a result of that subtracting is despread as data for that channel.