Abstract:
Processing data communications events in a parallel active messaging interface (‘PAMI’) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.
Abstract:
A parallel computer that includes compute nodes having computer processors and a CAU (Collectives Acceleration Unit) that couples processors to one another for data communications. In embodiments of the present invention, deterministic reduction operation include: organizing processors of the parallel computer and a CAU into a branched tree topology, where the CAU is a root of the branched tree topology and the processors are children of the root CAU; establishing a receive buffer that includes receive elements associated with processors and configured to store the associated processor's contribution data; receiving, in any order from the processors, each processor's contribution data; tracking receipt of each processor's contribution data; and reducing, the contribution data in a predefined order, only after receipt of contribution data from all processors in the branched tree topology.
Abstract:
Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.
Abstract:
Endpoint-based parallel data processing in a parallel active messaging interface (‘PAMI’) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Abstract:
Data communications in a parallel active messaging interface (‘PAMI’) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.
Abstract:
Compute nodes of a parallel computer organized for collective operations via a network, each compute node having a receive buffer and establishing a topology for the network; selecting a schedule for a broadcast operation; depositing, by a root node of the topology, broadcast data in a target node's receive buffer, including performing a DMA operation with a well-known memory location for the target node's receive buffer; depositing, by the root node in a memory region designated for storing broadcast data length, a length of the broadcast data, including performing a DMA operation with a well-known memory location of the broadcast data length memory region; and triggering, by the root node, the target node to perform a next DMA operation, including depositing, in a memory region designated for receiving injection instructions for the target node, an instruction to inject the broadcast data into the receive buffer of a subsequent target node.
Abstract:
Processing posted receive commands in a parallel computer, including: posting, by a parallel process of a compute node, a receive command, the receive command including a set of parameters excluding the receive command from being directed among parallel posted receive queues; flattening the parallel unexpected message queues into a single unexpected message queue; determining whether the posted receive command is satisfied by an entry in the single unexpected message queue; if the posted receive command is satisfied by an entry in the single unexpected message queue, processing the posted receive command; if the posted receive command is not satisfied by an entry in the single unexpected message queue: flattening the parallel posted receive queues into a single posted receive queue; and storing the posted receive command in the single posted receive queue.
Abstract:
A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.
Abstract:
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Abstract:
Routing data communications packets in a parallel computer that includes compute nodes organized for collective operations. Each compute node including an operating system kernel and a system-level messaging module that is a module of automated computing machinery that exposes a messaging interface to applications. Each compute node including a routing table that specifies, for each of a multiplicity of route identifiers, a data communications path through the compute node. Including to carry out the steps of: receiving in a compute node a data communications packet that includes a route identifier value; retrieving from the routing table a specification of a data communications path through the compute node; and routing, by the compute node, the data communications packet according to the data communications path identified by the compute node's routing table entry for the data communications packet's route identifier value.