摘要:
A finFET block architecture includes a first set of semiconductor fins having a first conductivity type, and a second set of semiconductor fins having a second conductivity type. An inter-block insulator is placed between outer fins of the first and second sets. A patterned gate conductor layer includes a first plurality of gate traces extending across the set of fins in the first block without crossing the inter-block insulator, and a second plurality of gate traces extending across the set of fins in the second block without crossing the inter-block insulator. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and include an inter-block connector arranged to connect gate traces in the first and second blocks.
摘要:
An automated method for estimating layout-induced variations in threshold voltage in an integrated circuit layout. The method begins with the steps of selecting a diffusion area within the layout for analysis. Then, the system identifies Si/STI edges on the selected area as well as channel areas and their associated gate/Si edges. Next, the threshold voltage variations in each identified channel area are identified, which requires further steps of calculating threshold voltage variations due to effects in a longitudinal direction; calculating threshold voltage variations due to effects in a transverse direction; and combining the longitudinal and transverse variations to provide an overall variation. Finally, a total variation is determined by combining variations from individual channel variations.
摘要:
An automated method for estimating layout-induced variations in threshold voltage in an integrated circuit layout. The method begins with the steps of selecting a diffusion area within the layout for analysis. Then, the system identifies Si/STI edges on the selected area as well as channel areas and their associated gate/Si edges. Next, the threshold voltage variations in each identified channel area are identified, which requires further steps of calculating threshold voltage variations due to effects in a longitudinal direction; calculating threshold voltage variations due to effects in a transverse direction; and combining the longitudinal and transverse variations to provide an overall variation. Finally, a total variation is determined by combining variations from individual channel variations.
摘要:
A finFET block architecture uses end-to-end finFET blocks. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. An inter-block isolation structure separates the semiconductor fins in the first and second sets. The ends of the fins in the first set are proximal to a first side of the inter-block isolation structure and ends of the fins in the second set are proximal to a second side of the inter-block isolation structure. A patterned gate conductor layer includes a first gate conductor extending across at least one fin in the first set of semiconductor fins, and a second gate conductor extending across at least one fin in the second set of semiconductor fins. The first and second gate conductors are connected by an inter-block conductor.
摘要:
An integrated circuit device having a plurality of lines is described in which the widths of the lines, and the spacing between adjacent lines, vary within a small range which is independent of variations due to photolithographic processes, or other patterning processes, involved in manufacturing the device. A sequential sidewall spacer formation process is described for forming an etch mask for the lines, which results in first and second sets of sidewall spacers arranged in an alternating fashion. As a result of this sequential sidewall spacer process, the variation in the widths of the lines across the plurality of lines, and the spacing between adjacent lines, depends on the variations in the dimensions of the sidewall spacers. These variations are independent of, and can be controlled over a distribution much less than, the variation in the size of the intermediate mask element caused by the patterning process.
摘要:
Roughly described, an integrated circuit device includes a substrate including a via passing therethrough, a strained electrically conductive first material in the via, the first material tending to introduce first stresses into the substrate, and a strained second material in the via, the second material tending to introduce second stresses into the substrate which at least partially cancel the first stresses. In an embodiment, SiGe is grown epitaxially on the inside sidewall of the via in the silicon wafer. SiO2 is then formed on the inside surface of the SiGe, and metal is formed down the center. The stresses introduce by the SiGe tend to counteract the stresses introduced by the metal, thereby reducing or eliminating undesirable stress in the silicon and permitting the placement of transistors in close proximity to the TSV.
摘要:
Improved layouts take better advantage of desirable cap-layer induced transverse and vertical stress. In one aspect, roughly described, a tensile strained cap material overlies the transistor channels in the N-channel diffusion regions but not the P-channel diffusion regions. The material terminates at an edge that is located as far as practical from the N-channel diffusion, toward the P-channel diffusion. In another aspect, roughly described, a gate conductor crosses a P-channel diffusion region and terminates as far as practical beyond the edge without making undesirable electrical contact with any other features of the integrated circuit design, and without overlying any other diffusion regions. A compressively strained cap layer overlies the P-channel diffusion. In yet another aspect, roughly described, a gate conductor crosses an N-channel diffusion and extends by as short a distance as practical before terminating or turning. A tensile strained cap material overlies the N-channel diffusion.
摘要:
Improved layouts take better advantage of desirable cap-layer induced transverse and vertical stress. In one aspect, roughly described, a tensile strained cap material overlies the transistor channels in the N-channel diffusion regions but not the P-channel diffusion regions. The material terminates at an edge that is located as far as practical from the N-channel diffusion, toward the P-channel diffusion. In another aspect, roughly described, a gate conductor crosses a P-channel diffusion region and terminates as far as practical beyond the edge without making undesirable electrical contact with any other features of the integrated circuit design, and without overlying any other diffusion regions. A compressively strained cap layer overlies the P-channel diffusion. In yet another aspect, roughly described, a gate conductor crosses an N-channel diffusion and extends by as short a distance as practical before terminating or turning. A tensile strained cap material overlies the N-channel diffusion.
摘要:
Roughly described, transistor channel regions are elevated over the level of certain adjacent STI regions. Preferably the STI regions that are transversely adjacent to the diffusion regions are suppressed, as are STI regions that are longitudinally adjacent to N-channel diffusion regions. Preferably STI regions that are longitudinally adjacent to P-channel diffusions are not suppressed; preferably they have an elevation that is at least as high as that of the diffusion regions.