摘要:
Self-aligned via interconnects using relaxed patterning exposure. In accordance with a first method embodiment, a method for controlling a computer-aided design (CAD) system for designing physical features of an integrated circuit includes accessing a first pattern for first metal traces on a first metal layer, accessing a second pattern for second metal traces on a second metal layer, vertically adjacent to the first metal layer and accessing a precise pattern of intended interconnections between the first and second metal traces. The precise pattern of intended interconnections is operated on to form an imprecise via pattern that indicates a plurality of general areas in which vias are allowed. The imprecise via pattern is for use in an integrated circuit manufacturing process to form, in conjunction with operations to form the first and second metal layers, a plurality of self-aligned vias for interconnecting the intended interconnections.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
摘要:
Roughly described, an integrated circuit device has formed on a substrate a plurality of transistors including a first subset of at least one transistor and a second subset of at least one transistor, wherein all of the transistors in the first subset have one underlap distance and all of the transistors in the second subset have a different underlap distance. The transistors in the first and second subsets preferably have different threshold voltages, and preferably realize different points on the high performance/low power tradeoff.
摘要:
A finFET block architecture includes a first set of semiconductor fins having a first conductivity type, and a second set of semiconductor fins having a second conductivity type. An inter-block insulator is placed between outer fins of the first and second sets. A patterned gate conductor layer includes a first plurality of gate traces extending across the set of fins in the first block without crossing the inter-block insulator, and a second plurality of gate traces extending across the set of fins in the second block without crossing the inter-block insulator. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and include an inter-block connector arranged to connect gate traces in the first and second blocks.
摘要:
An integrated circuit device having a plurality of lines is described in which the widths of the lines, and the spacing between adjacent lines, vary within a small range which is independent of variations due to photolithographic processes, or other patterning processes, involved in manufacturing the device. A sequential sidewall spacer formation process is described for forming an etch mask for the lines, which results in first and second sets of sidewall spacers arranged in an alternating fashion. As a result of this sequential sidewall spacer process, the variation in the widths of the lines across the plurality of lines, and the spacing between adjacent lines, depends on the variations in the dimensions of the sidewall spacers. These variations are independent of, and can be controlled over a distribution much less than, the variation in the size of the intermediate mask element caused by the patterning process.
摘要:
Roughly described, standard SPICE models can be modified by substituting a different stress analyzer to better model the stress adjusted characteristics of a transistor. A first, standard, stress-sensitive, transistor model is used to develop a mathematical relationship between the first transistor performance measure and one or more instance parameters that are available as inputs to a second, stress-insensitive, transistor model. The second transistor model may for example be the same as the first model, with its stress sensitivity disabled. Thereafter, a substitute stress analyzer can be used to determine a stress-adjusted value for the first performance measure, and the mathematical relationship can be used to convert that value into specific values for the one or more instance parameters. These values are then provided to the second transistor model for use in simulating the characteristics of the particular transistor during circuit simulation.
摘要:
An automated method for compensating for process-induced variations in threshold voltage and drive current in a MOSFET integrated circuit. The method's first step is selecting a transistor for analysis from the array. The method loops among the transistors of the array as desired. Next the design of the selected transistor is analyzed, including the steps of determining threshold voltage variations induced by layout neighborhood; determining drive current variations induced by layout neighborhood. The method then proceeds by attempting to compensate for any determined variations by varying the length of the transistor gate. The method can further include the step of identifying any shortcoming in compensation by varying contact spacing.
摘要:
Different approaches for FinFET performance enhancement based on surface/channel direction and type of strained capping layer are provided. In one relatively simple and inexpensive approach providing a performance boost, a single surface/channel direction orientation and a single strained capping layer can be used for both n-channel FinFETs (nFinFETs) and p-channel FinFETs (pFinFETs). In another approach including more process steps (thereby increasing manufacturing cost) but providing a significantly higher performance boost, different surface/channel direction orientations and different strained capping layers can be used for nFinFETs and pFinFETs.