Abstract:
A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss at not only a commercial frequency but also a high frequency zone, which has a chemical composition including C: not more than 0.0050 mass %, Si: more than 1.5 mass % but not more than 5.0 mass %, Mn: not more than 0.10 mass %, sol. Al: not more than 0.0050 mass, P: more than 0.040 mass % but not more than 0.2 mass %, S: not more than 0.0050 mass %, N: not more than 0.0040 mass % and Ca: 0.001-0.01 mass % and the remainder being Fe and inevitable impurities and a compositional ratio of CaO in oxide-based inclusions existing in a steel sheet of not less than 0.4 and/or a compositional ratio of Al2O3 of not less than 0.3, and a hot rolled steel sheet used as a raw steel material thereof.
Abstract translation:不仅商业频率高频区具有高磁通密度和低铁损的无方向性电磁钢板,其具有C:不大于0.0050质量%的化学组成,Si:大于 1.5质量%以上且5.0质量%以下,Mn:0.10质量%以下。 Al:0.0050质量%以下,P:大于0.040质量%以上0.2质量%以下,S:0.0050质量%以下,N:0.0040质量%以下,Ca:0.001-0.01质量% 余量为Fe和不可避免的杂质,钢板中存在的氧化物系夹杂物中的CaO的组成比不小于0.4,和/或Al 2 O 3的组成比为0.3以上,热轧钢板用作 生钢材料。
Abstract:
A slit nozzle having a double-tube structure and a method for manufacturing a high-silicon steel strip having a small variation in Si concentration depending on the position in the width direction of the steel strip. The slit nozzle has a double-tube structure, in which a flow-control plate which closes a gap between an inner tube and an outer tube is disposed between an open end of the inner tube and an end of a delivery port, and in which an opening is formed in a plane in which the flow-control plate is disposed only in a range of the flow-control plate of 27.5° or more and 332.5° or less in terms of a central angle with respect to a reference line L1 passing through the axis of the outer tube and the central position in the width direction of the delivery port.
Abstract:
An analysis system 10 includes: an operational data acquisition unit 11 that acquires operational data including an operational state of a production line 20; a product information acquisition unit 13 that acquires a state of a product manufactured in the production line and outputs the state of the product as product information; a production state analyzer 12 that obtains a predetermined physical quantity of the product on a basis of the operational data acquired by the operational data acquisition unit 11 and outputs the predetermined physical quantity as information on the physical quantity; and a correlation analyzer 14 that performs analysis of a correlation between the information on the physical quantity and the product information.
Abstract:
A non-oriented electrical steel sheet is obtained by subjecting a slab containing C: not more than 0.005 mass %, Si: 1.0-5.0 mass %, Mn: 0.04-3.0 mass %, sol. Al: not more than 0.005 mass %, P: 0.03-0.2 mass %, S: not more than 0.005 mass %, N: not more than 0.005 mass %, B: not more than 0.001 mass %, and Se: not more than 0.001 mass % and satisfying sol. Al+C+5B+5Se≦0.005 mass % to hot rolling, cold rolling and finish annealing. A sheet temperature at the outlet side of the rolling machine in at least one pass of the final cold rolling is set to a range of 100-300° C. to provide S/2M of not less than 1.0 and S/5C of not less than 1.0 when X-ray intensity ratios of {001} , {111} and {001} in a central layer in a thickness direction are S, M and C, respectively.
Abstract:
A top-blowing lance nozzle is configured to freely switch an adequate expansion condition so as to control an oxygen-blowing amount and a jetting velocity independently of each other without requiring a plurality of lance nozzles or a mechanically movable part. A lance nozzle is configured to blow refining oxygen to molten iron charged in a reaction vessel while a gas is blown from a top-blowing lance to the molten iron. One or more blowing holes for blowing a working gas are on an inner wall side surface of the nozzle, at a site where the lance nozzle has a minimum cross-sectional area in a nozzle axis direction or at a neighboring site of the site.
Abstract:
A non-oriented electrical steel sheet having a chemical composition comprising C: not more than 0.010 mass %, Si: 1.0-7.0 mass %, Mn: 0.001-3.0 mass %, sol. Al: 0.0001-3.5 mass %, P: 0.01-0.2 mass %, S: not more than 0.010 mass %, N: not more than 0.010 mass % and the remainder being Fe and inevitable impurities, wherein a ratio (P120/Fe700) of a peak-peak height P120 of P near to an electronic energy of 120 eV to a peak-peak height Fe700 of Fe near to an electronic energy of 700 eV in an Auger differential spectrum obtained by analyzing a broken surface of a grain boundary through Auger electron spectroscopy is not less than 0.1 and a sheet thickness is 0.10-0.50 mm, and a motor using such a non-oriented electrical steel sheet as an iron core.