Abstract:
A magnetic sheet according to the present invention contains Mn—Zn ferrite as a main component and is comprised of a sheet-shaped sintered body. Besides, a ratio of ZMIN to ZMAX (ZMIN/ZMAX×100) is 90% or more, in which a maximum value of a content of Zn in terms of oxide is set to ZMAX and a minimum value of the content of Zn in terms of oxide is set to ZMIN in a thickness direction of a cross section of the sintered body.
Abstract:
A magnetic material includes a soft magnetic metal grain containing Fe, and a multilayer oxide film covering the surfaces of the soft magnetic metal grain. The multilayer oxide film has a first oxide layer of crystalline nature containing Fe, and a second oxide layer of amorphous nature containing Si. In an embodiment, the silicon oxide film of amorphous nature is formed by dripping, divided into multiple sessions, a treatment solution containing TEOS (tetraethoxy silane), ethanol, and water into a mixed solution containing the soft magnetic metal grain, ethanol, and ammonia water, to mix the solutions.
Abstract:
The present invention provides a method for preparing iron oxide magnetic particles and iron oxide magnetic particles prepared thereby, wherein the method includes (a) synthesizing a complex by reacting iron and one or more compounds selected from the group consisting of an aliphatic hydrocarbonate having 4 to 25 carbon atoms and an amine compound, (b) synthesizing an iron oxide crystal nucleus by mixing the complex with a mixture of an unsaturated aliphatic hydrocarbon-based compound having 4 to 25 carbon atoms and an ether-based compound, and (c) forming a shell by mixing the iron oxide crystal nucleus and an MXn compound with a mixture of an unsaturated aliphatic hydrocarbon-based compound having 4 to 25 carbon atoms and an ether-based compound, wherein M is a heavy atom element, X is a halogen element, and n is an integer of 1 to 6.
Abstract:
A method of forming a single phase compositionally complex material including a plurality of transition metals is provided. The method includes creating a magnetic phase diagram to predict magnetic behavior, by calculating expected magnetic states and calculating the spin structure factor by Fourier transform; calculating the spin structure factor by Fourier transform; obtaining a transition temperature from the spin structure factor; selecting the plurality of transition metals and corresponding transition metal composition ratios for the material based on a desired magnetic behavior and the calculated spin structure factor; and forming the material that is a compositionally complex transition metal oxide comprising the plurality of transition metals at the selected composition ratios. The material may be a compositionally complex ABO3 perovskite film in which A is La and B is the plurality of transition metals including Cr, Mn, Fe, Co, and Ni.
Abstract:
Disclosed herein is a method comprising disposing a first particle in a reactor; the first particle being a magnetic particle or a particle that can be influenced by a magnetic field, an electric field or a combination of an electrical field and a magnetic field; fluidizing the first particle in the reactor; applying a uniform magnetic field, a uniform electrical field or a combination of a uniform magnetic field and uniform electrical field to the reactor; elevating the temperature of the reactor; and fusing the first particles to form a monolithic solid.
Abstract:
An organically surface-bonded metal or metal oxide material including an inorganic metal or metal oxide and an organic material. The organic material is coated on the surface of the inorganic metal or metal oxide. The inorganic metal or metal oxide and the organic material are linked through a strong chemical bond. The strong chemical bond includes a covalent bond between a metal in the inorganic metal or metal oxide and a nitrogen in the organic material.
Abstract:
A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1−xBxRyFe2−yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
Abstract:
The present invention provides iron oxide magnetic particles including an iron oxide and MXn, wherein M includes one or more selected from the group consisting of Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd, and Os, X includes one or more selected from the group consisting of F, Cl, Br, and I, and n is an integer of 1 to 6.
Abstract:
A magnetic material has: multiple soft magnetic alloy grains that contain Fe, element L (where element L is Si, Zr, or Ti), and element M (where element M is not Si, Zr, or Ti, and oxidizes more easily than Fe); a first oxide film that contains element L and covers each of the multiple soft magnetic alloy grains; a second oxide film that contains element M and covers the first oxide film; a third oxide film that contains element L and covers the second oxide film; a fourth oxide film that contains Fe and covers the third oxide film; and bonds that are constituted by parts of the fourth oxide film and that bond the multiple soft magnetic alloy grains together.
Abstract:
An organically surface-bonded metal or metal oxide material including an inorganic metal or metal oxide and an organic material. The organic material is coated on the surface of the inorganic metal or metal oxide. The inorganic metal or metal oxide and the organic material are linked through a strong chemical bond. The strong chemical bond includes a covalent bond between a metal in the inorganic metal or metal oxide and a nitrogen in the organic material.