摘要:
Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
摘要:
Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
摘要:
Provided is a method for manufacturing a semiconductor device. The method includes: providing a first substrate where an active layer is formed on a buried insulation layer; forming a gate insulation layer on the active layer; forming a gate electrode on the gate insulation layer; forming a source/drain region on the active layer at both sides of the gate electrode; exposing the buried insulation layer around a thin film transistor (TFT) including the gate electrode and the source/drain region; forming an under cut at the bottom of the TFT by partially removing the buried insulation layer; and transferring the TFT on a second substrate.
摘要:
Provided are an organic thin film transistor and a method of forming the same. The method comprises forming a gate electrode on a substrate, forming a gate dielectric, which covers the gate electrode and includes a recess region at an upper portion, on the substrate, forming a source electrode and a drain electrode in the recess region, and forming an organic semiconductor layer between the source electrode and the drain electrode in the recess region.
摘要:
Provided is a method for forming a metal oxide. A method for forming a metal oxide according to embodiments of the present invention includes preparing a metal oxide precursor solution including a dopant chemical species, preparing an alcohol-based solution including a basic chemical species, reacting the alcohol-based solution with the metal oxide precursor solution to form a reactant, and purifying the reactant to form a metal oxide.
摘要:
Provided are an organic thin film transistor and a method of forming the same. The method comprises forming a gate electrode on a substrate, forming a gate dielectric, which covers the gate electrode and includes a recess region at an upper portion, on the substrate, forming a source electrode and a drain electrode in the recess region, and forming an organic semiconductor layer between the source electrode and the drain electrode in the recess region.
摘要:
Provided is a method for manufacturing a semiconductor device. The method includes: providing a first substrate where an active layer is formed on a buried insulation layer; forming a gate insulation layer on the active layer; forming a gate electrode on the gate insulation layer; forming a source/drain region on the active layer at both sides of the gate electrode; exposing the buried insulation layer around a thin film transistor (TFT) including the gate electrode and the source/drain region; forming an under cut at the bottom of the TFT by partially removing the buried insulation layer; and transferring the TFT on a second substrate.
摘要:
Provided is a manufacturing methods of a semiconductor device. The methods includes: forming an active layer on a first substrate; bonding a top surface of the active layer with a second substrate and separating the active layer from the first substrate; forming conductive impurity regions corresponding to source and drain regions of the active layer bonded on the second substrate; bonding a third substrate on a bottom surface of the active layer and removing the second substrate; and forming a gate electrode on a top between the conductive impurity regions of the active layer bonded on the third substrate and forming source and drain electrodes on the conductive impurity regions.
摘要:
Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
摘要:
Provided is a solid type heat dissipation device for electronic communication appliances. The solid type heat dissipation device includes a graphite thin plate horizontally transferring heat, a plurality of metal fillers passing through the graphite thin plate to vertically transfer heat, and a plurality of metal thin plates attached to upper and lower surfaces of the graphite thin plate and connected to the metal fillers.