Abstract:
A resistive memory device may include a substrate, gate electrode structures, a first impurity region, a second impurity region, a first metal silicide pattern and a second metal silicide pattern. The substrate may have a first region where isolation patterns and first active patterns may be alternately arranged in a first direction, and a second region where linear second active patterns may be extended in the first direction. The gate electrode structures may be arranged between the first region and the second region of the substrate. The first and second impurity regions may be formed in the first and second impurity regions. The first metal silicide pattern may have an isolated shape configured to make contact with an upper surface of the first impurity region. The second metal silicide pattern may make contact with an upper surface of the second impurity region.
Abstract:
A magnetoresistive random access memory (MRAM) device including a substrate including a plurality of active patterns arranged along a first direction, each of the active patterns extending in a diagonal direction with respect to the first direction; a plurality of gate structures on the substrate, the gate structures extending in a second direction substantially perpendicular to the first direction; a source line structure electrically connected to source regions of the respective active patterns, the source line structure extending in the first direction; a plurality of magnetic tunnel junction (MTJ) structures electrically connected to drain regions of the respective active patterns, the MTJ structures being spaced apart from each other; and a bit line structure electrically connected to the MTJ structures in respective memory cells, the memory cells sharing with the source line structure.
Abstract:
A mobile phone includes a multi-band antenna which is mutually connected in a dependent manner for operation according to a signal transmitted to and received from the mobile phone; and a resonance unit for generating resonance for multiple frequency bands as ends of the multi-band antenna are spaced apart at a predetermined interval, to improve mute performance, reduce SAR, and prevent a reduction in call performance due to an influence of a user's body and hand when holding the mobile phone to make a call.
Abstract:
In a MOS transistor and a method of manufacturing the same, a gate structure including a gate insulating layer and a gate electrode is formed on a semiconductor substrate. A first insulating layer is formed to cover the gate structure. A second insulating layer is formed on the substrate that is spaced apart from the first insulating layer. A lightly doped source/drain region is formed in the surface portions of the substrate between the second insulating layer and the gate structure. A source/drain extension layer are formed on the lightly doped source/drain region. A heavily doped source/drain region is formed on the second insulating layer so as to connect with the source/drain extension layer. The short channel effect is suppressed and the source/drain junction capacitance is reduced.