Abstract:
Embodiments of the present invention provide a controller (200), comprising input means (230) for receiving an environment signal indicative of a feature in a vicinity of a vehicle, output means (240) for outputting a manoeuvre signal to cause a vehicle to perform a defined manoeuvre, and control means (210) arranged to provide at least one mode for performing at least a portion of the defined manoeuvre, the mode being selectable from a plurality of modes including at least one mode corresponding to an occupant-in-vehicle mode and at least one mode corresponding to an occupant-out-of-vehicle mode, the mode being selectable in dependence upon the environment signal being indicative of a vehicle envelope suitable for the mode.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises receiving one or more electrical signals representative of vehicle-related information. The method further comprises determining, based on the signals representative of vehicle-related information, whether one or more predetermined conditions are met. The method still further comprises automatically determining a baseline set-speed for the speed control system when it is determined that at least certain of the one or more predetermined conditions are met. The method yet still further comprises adjusting the baseline set-speed to determine an instantaneous set-speed of the speed control system based on a signal indicative of a desired comfort level. A speed control system comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
Abstract:
Embodiments of the present invention provide a controller (200), comprising input means (230) for receiving an environment signal indicative of a feature in a vicinity of a vehicle, output means (240) for outputting a manoeuvre signal to cause a vehicle to perform a defined manoeuvre, and control means (210) arranged to provide at least one mode for performing at least a portion of the defined manoeuvre, the mode being selectable from a plurality of modes including at least one mode corresponding to an occupant-in-vehicle mode and at least one mode corresponding to an occupant-out-of-vehicle mode, the mode being selectable in dependence upon the environment signal being indicative of a vehicle envelope suitable for the mode.
Abstract:
Embodiments of the present invention provide a controller (110). The controller (110) comprises input means (140) for receiving one or more state signals each indicative of one or more of a vehicle characteristic, a user characteristic and an environment characteristic. The controller (110) comprises output means (150) for outputting an availability signal indicative of an availability of an autonomous driving mode of a host vehicle. The controller (110) comprises control means (120) arranged to control the output means (150) to output the availability signal in dependence on the one or more state signals.
Abstract:
A method for use with a speed control system of a vehicle is provided. The method comprises receiving readings from one or more vehicle sensors to determine the nature of the terrain over which the vehicle is traveling. The method further comprises gathering information relating to one or more parameters of the vehicle that correspond to the configuration of the vehicle. The method still further comprises determining, based on the nature of the terrain and the gathered information, whether the vehicle is appropriately configured to travel over the terrain. A system comprising an electronic control unit configured to perform the method is also provided.
Abstract:
A vehicle control system having a plurality of speed control systems, each operable to cause the vehicle to operate in accordance with a respective target speed. The system is operable wherein one of the plurality of speed control systems may be selected to control vehicle speed at a given moment in time, wherein when responsibility for speed control is transferred from a first one of the plurality of speed control systems to a second one of the speed control systems, the second one of the speed control systems is operable to set a value of target speed thereof to a value corresponding to that of the target speed of the first.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
Abstract:
A method for operating a speed control system of a vehicle having a plurality of wheels is provided. The method comprises receiving one or more electrical signals representative of vehicle-related information. The method further comprises determining, based on the one or more electrical signals representative of vehicle-related information, that one or more of the wheels of the vehicle have overcome an obstacle or are about to overcome an obstacle and that therefore a reduction in an applied drive torque to one or more of the wheels of the vehicle by a powertrain subsystem (applied drive torque) will be required to maintain the speed of the vehicle at a target set-speed of the speed control system. The method still further comprises automatically commanding the application of a retarding torque to one or more of the wheels of the vehicle to counteract the effect of an overrun condition in the powertrain subsystem from increasing the speed of the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
A method for operating an off-road speed control system of a vehicle is provided. The method comprises identifying a pattern or change in at least one component of vehicle drag. The method further comprises monitoring vehicle speed to predict where a change in the at least one component of vehicle drag may result in a speed overshoot event or a speed undershoot event. The method still further comprises, in response to the predicted speed overshoot event or speed undershoot event, automatically commanding the application of an appropriate opposing torque to one or more wheels of the vehicle to counteract the predicted speed overshoot or undershoot. An off-road speed control system for a vehicle comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.