Abstract:
Apparatus (101) for controlling movement of a vehicle (100), a system (201) and vehicle 5 (100) comprising the apparatus (101), and a method (500, 600) for controlling the movement of a vehicle (100) are disclosed. The apparatus (101) comprises a controller (10) configured to receive first signals from a receiving means (202) in dependence on received transmitted signals from a remote control device (200) indicating a requested motion of a vehicle and to receive second signals indicative of a value of traction of the vehicle. A maximum speed 10 value for the vehicle is determined in dependence on the value of traction of the vehicle and/or on one or both of the detected pitch and roll angles of the vehicle (100). The controller (10) provides an output signal for controlling speed of the vehicle (100) based on the requested motion. The output signal is limited dependent upon the maximum speed value determined by the controller (10).
Abstract:
A vehicle is adapted to sense a condition of use in which a maximum speed control speed is reduced. The condition of use may be indicated by a sensor of the vehicle, or selected according to the kind of terrain across which the vehicle is travelling. Selection of terrain type may be manual or automatic, and may enable a selection of sensors appropriate to the terrain type. A vehicle driver may select a speed control speed lower than the permitted maximum.
Abstract:
A method for use with a speed control system of a vehicle is provided. The method comprises receiving readings from one or more vehicle sensors to determine the nature of the terrain over which the vehicle is traveling. The method further comprises gathering information relating to one or more parameters of the vehicle that correspond to the configuration of the vehicle. The method still further comprises determining, based on the nature of the terrain and the gathered information, whether the vehicle is appropriately configured to travel over the terrain. A system comprising an electronic control unit configured to perform the method is also provided.
Abstract:
A vehicle control system having a plurality of speed control systems, each operable to cause the vehicle to operate in accordance with a respective target speed. The system is operable wherein one of the plurality of speed control systems may be selected to control vehicle speed at a given moment in time, wherein when responsibility for speed control is transferred from a first one of the plurality of speed control systems to a second one of the speed control systems, the second one of the speed control systems is operable to set a value of target speed thereof to a value corresponding to that of the target speed of the first.
Abstract:
A speed control system for a vehicle, comprising an electronic controller configured to automatically cause a vehicle to operate in accordance with a target speed value. The electronic controller is further configured to receive information relating to movement of at least a portion of a vehicle body or at least a portion of a body of an occupant relative to a vehicle, and to automatically adjust the value of the target speed value in dependence on the received information.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
Abstract:
A vehicle is adapted to sense a condition of use in which a maximum speed control speed is reduced. The condition of use may be indicated by a sensor of the vehicle, or selected according to the kind of terrain across which the vehicle is travelling. Selection of terrain type may be manual or automatic, and may enable a selection of sensors appropriate to the terrain type. A vehicle driver may select a speed control speed lower than the permitted maximum.
Abstract:
Embodiments of the present invention provide a motor vehicle control system for selecting and/or determining a driving surface and for controlling a plurality of vehicle subsystems to operate in a plurality of subsystem control modes in dependence on the selected/determined driving surface, the system being operable in a manual control mode selection condition in which a user is able to select said driving surface and an automatic control mode selection condition in which the system is configured to select said driving surface automatically, wherein the vehicle control system is provided with a memory arranged to memorise a last selected control mode that was selected prior to vehicle de-activation or key-off when operating in the automatic control mode selection condition, and upon the next subsequent vehicle activation or key-on, the system is configured to continue operating in the memorised control mode and to automatically obtain new data in respect of a driving surface over which the vehicle is moving before allowing a change in control mode to take place.
Abstract:
A method for operating a speed control system of a vehicle having a plurality of wheels is provided. The method comprises receiving one or more electrical signals representative of vehicle-related information. The method further comprises determining, based on the one or more electrical signals representative of vehicle-related information, that one or more of the wheels of the vehicle have overcome an obstacle or are about to overcome an obstacle and that therefore a reduction in an applied drive torque to one or more of the wheels of the vehicle by a powertrain subsystem (applied drive torque) will be required to maintain the speed of the vehicle at a target set-speed of the speed control system. The method still further comprises automatically commanding the application of a retarding torque to one or more of the wheels of the vehicle to counteract the effect of an overrun condition in the powertrain subsystem from increasing the speed of the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
A method for operating an off-road speed control system of a vehicle is provided. The method comprises identifying a pattern or change in at least one component of vehicle drag. The method further comprises monitoring vehicle speed to predict where a change in the at least one component of vehicle drag may result in a speed overshoot event or a speed undershoot event. The method still further comprises, in response to the predicted speed overshoot event or speed undershoot event, automatically commanding the application of an appropriate opposing torque to one or more wheels of the vehicle to counteract the predicted speed overshoot or undershoot. An off-road speed control system for a vehicle comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.