摘要:
Optical fiber structures having at least two cores, whether unitary or separable, may be fabricated by controlling the placement of the cores prior to final processing to make the multi-core fiber structure. When the fiber is to be separable, at least two performs are attached, and the attachment height between adjacent canes is controlled to allow separation to be realized (or attachment to be maintained there between) anywhere along the separable multi-core fiber. These canes are then drawn together to form a desired composite fiber, either or both ends of which may be separated to allow for individual manipulation of fiber ends. The separable multi-core fiber may be utilized to fabricate a dual-port or multi-port optical component in which an input and an output (or multiple input/output) fibers are attached to the component, and the exposed distal ends of the separable multi-core fiber are thereafter separated from one another (even after the entire device is assembled and packaged) to provide separated waveguides for pigtailing or splicing to input or output fibers (or other planar or micro-optic components).
摘要:
Disclosed is a single mode optical waveguide fiber having a low cut off wavelength, and mode field diameter and bend resistance similar to step index single mode optical waveguide fiber designed for use at 1310 nm. By including a clad region of raised refractive index spaced apart from the core region of the single mode optical waveguide fiber, the cut off wavelength can be reduced to 850 nm. The single mode optical waveguide fiber in accord with the invention may also have a core region having a reduced refractive index on centerline surrounded by a region of higher refractive index and a clad region which is substantially uniform. The single mode optical waveguide fiber is thus ideally suited for use with the low cost, reliable VCSEL operating at 850 nm, a Fabry-Perot laser operating at 1310 nm, or a distributed feedback laser operating at 1550 nm thereby enabling low cost, easily installed, home access portions of the broadband telecommunications system.
摘要:
A method for generating a linear single-polarization output beam comprises providing an optically active linearly birefringent and linearly dichroic fiber for propagating light and having a single polarization wavelength range and a gain bandwidth; optically pumping the optically active linearly birefringent and linearly dichroic fiber for obtaining fluorescence within the gain bandwidth; and aligning the single-polarization wavelength range to overlap a desired spectral region of the gain profile.
摘要:
A single-mode optical waveguide fiber designed to limit power penalty due to four wave mixing and a method of making the waveguide is disclosed. Variations in properties, e.g., radius or refractive index, of the waveguide fiber core provide a total dispersion which varies along the length of the waveguide. The algebraic sum of products of length times total dispersion is controlled to a pre-selected value for each waveguide fiber which makes up a system link Proper choice of total dispersion variation magnitude and sub-length results in a system link wherein a signal travels only short distances in waveguide portions having total dispersion near zero. However, the variation of the total dispersion provides a system link which has a pre-selected dispersive effect on the signal over a selected wavelength range. The dispersive effect on the signal can be chosen to be essentially zero. A number of techniques for fabricating DM fiber are also disclosed.
摘要:
An optical fiber that includes a central core having a maximum dimension (A) greater than a minimum dimension (B), preferably with an aspect ratio greater than 1.5, the fiber having at least one air hole positioned on opposite sides of the central core and extending along the fiber's length wherein the fiber supports a single polarization mode within an operating wavelength band. The fiber may be coupled to optical components in systems to provide single polarization in the band. A method for manufacturing the fiber is also provided.
摘要:
An optically active linear single polarization device includes a linearly birefringent and linearly dichroic optical waveguide (30) for propagating light and having single polarization wavelength range (48). A plurality of active dopants are disposed in a portion (34) of the linearly birefringent and linearly dichroic optical waveguide (30) for providing operation of the waveguide in an operating wavelength range (650) for overlapping the single polarization wavelength range (48).
摘要:
A method for generating a linear single-polarization output beam comprises providing an optically active linearly birefringent and linearly dichroic fiber for propagating light and having a single polarization wavelength range and a gain bandwidth; optically pumping the optically active linearly birefringent and linearly dichroic fiber for obtaining fluorescence within the gain bandwidth; and aligning the single-polarization wavelength range to overlap a desired spectral region of the gain profile.
摘要:
The present invention provides environmentally stable interferometric and lattice devices that exhibit low excess loss and polarization dependent loss. The interferometric and lattice devices of the present invention are inexpensive and simple to make. The modal noise at the splices between the device pigtails and the system fiber is minimized or eliminated. The present invention is an optical device for filtering a light signal. The optical device has a tunable spectral response. The optical device includes an optical fiber having a core region and a cladding with refractive index n2. The first core region includes a core having a refractive index n1 and a first fiber coupling regulator integral with the first optical fiber. The first fiber coupling regulator couples the light signal between a first optical path and second optical path and substantially prevents the light signal from coupling into a third optical path.
摘要:
A fiber optic sensor for simultaneously and independently measuring temperature and axial stress. The fiber sensor includes a pair of polarization-maintaining fibers that have known strain and temperature response curves. Each fiber has a plurality of fiber segments in which the elliptical cores are rotated 45° relative to the preceding core segment. Thus, the phase shift induced by temperature or stress in each of the fibers is detected, and the strain and temperature are derived from the detected phase shift. The fiber optic sensor is capable of dual operation. As both a temperature sensor and an axial stress sensor.