摘要:
A system and method for synchronously transmitting media data is described. Synchronization data may be transmitted by a cycle master for receipt by one or more cycle slaves. A cycle slave may update an internal state based on the synchronization data received from the cycle master. The cycle master may transmit media data to multiple cycle slaves. The media data output by the cycle slaves may be determined, in part, by the internal state. In one embodiment, the media data may determine which cycle slave receives particular media data.
摘要:
A system and method for closely synchronizing the transmission of real-time data streams is described. Synchronization data is transmitted by a cycle master for receipt by one or more cycle slaves. A cycle slave updates an internal state based on synchronization data received from the cycle master. This internal state may govern reproduction of received real-time data streams by the cycle slave. Such synchronization data may be inserted into transmitted media streams. The cycle slave internal state may be more accurately set by calculating timing differences between the cycle master and cycle slave and periodically adjusting that internal state between receipt of the synchronization data from the cycle master.
摘要:
A method of providing synchronization-free station locating in a wireless network is provided. In this method, an AP having a known location sends a unicast packet to the station and notes its time of departure TOD(D). The station receives the unicast packet, notes its time of arrival TOA(D), sends an acknowledgement packet to the AP, and notes its time of departure TOD(D_ACK). The AP receives the acknowledgment packet and notes its time of arrival TOA(D_ACK). Notably, a distance between the AP and the station can be accurately determined using a first difference between the TOA(D_ACK) and the TOD(D) and a second difference between the TOD(D_ACK) and the TOA(D). A plurality of such computed distances between a plurality of APs and the station can be used to determine an accurate location of the station.
摘要:
A method of providing synchronization-free station locating in a wireless network is provided. In this method, an AP having a known location sends a unicast packet to the station and notes its time of departure TOD(D). The station receives the unicast packet, notes its time of arrival TOA(D), sends an acknowledgement packet to the AP, and notes its time of departure TOD(D_ACK). The AP receives the acknowledgment packet and notes its time of arrival TOA(D_ACK). Notably, a distance between the AP and the station can be accurately determined using a first difference between the TOA(D_ACK) and the TOD(D) and a second difference between the TOD(D_ACK) and the TOA(D). A plurality of such computed distances between a plurality of APs and the station can be used to determine an accurate location of the station.
摘要:
A system and method for closely synchronizing the transmission of real-time data streams is described. Synchronization data is transmitted by a cycle master for receipt by one or more cycle slaves. A cycle slave updates an internal state based on synchronization data received from the cycle master. This internal state may govern reproduction of received real-time data streams by the cycle slave. Such synchronization data may be inserted into transmitted media streams. The cycle slave internal state may be more accurately set by calculating timing differences between the cycle master and cycle slave and periodically adjusting that internal state between receipt of the synchronization data from the cycle master.
摘要:
A method of providing synchronization-free station locating in a wireless network is provided. In this method, an AP having a known location sends a unicast packet to the station and notes its time of departure TOD(D). The station receives the unicast packet, notes its time of arrival TOA(D), sends an acknowledgement packet to the AP, and notes its time of departure TOD(D_ACK). The AP receives the acknowledgment packet and notes its time of arrival TOA(D_ACK). Notably, a distance between the AP and the station can be accurately determined using a first difference between the TOA(D_ACK) and the TOD(D) and a second difference between the TOD(D_ACK) and the TOA(D). A plurality of such computed distances between a plurality of APs and the station can be used to determine an accurate location of the station.
摘要:
Various methods and corresponding active interference cancellation units are described. These methods and units can perform active interference cancellation in a system including multiple radios. Notably, signals from a first radio can be received as interference at a second radio. The described methods and units can provide interference conditioning, which manipulates an interference reference of the interference at the first radio to approximate an interference observed at the second radio. After tuning of the interference conditioning, the interference can be removed.
摘要:
Synchronization and impairment estimations can be performed jointly, thereby saving valuable time for decoding of the received packet. An initial synchronization in a TDMA system can be performed. Using this synchronization, the frequency offset choices and timing offset choices can be advantageously bounded within predetermined ranges. At this point, an algorithm can find the minimum error that gives the best frequency offset choice and timing offset choice combination over their respective ranges, together with the estimates of the signal magnitude and phase and at least one of a DC offset magnitude and phase, and a spur magnitude and phase.
摘要:
An automatic gain control (AGC) technique can quickly sense signal size over a large dynamic range by using a peak detector block in the analog portion of the receiver. The peak detector block can compare a received signal to predetermined thresholds (chosen to divide a potential signal range into smaller ranges). Therefore, the peak detector block can assist the automatic gain control (AGC) in quickly sizing the received signal. The AGC technique can also reduce digital filter settling time by simulating a gain change and providing this simulated value to the digital filters of the receiver. DC or spur components can be estimated prior to and after performing an analog gain change and then removed from digital signal samples. The digital signal samples sampled prior to performing the analog gain change can then be rescaled and provided to the digital filter, thereby avoiding discontinuity in a digital signal.
摘要:
A method and system for pulling a crystal frequency are provided, thereby allowing wireless stations to use less accurate crystal oscillators and dramatically reduce cost. A first frequency offset can be determined using a temperature-based method. This temperature-base method can include detecting a temperature substantially that of the crystal oscillator and then using that temperature to determine the first frequency offset. A second frequency offset using a closed loop frequency estimate-based method can also be determined. This frequency estimate-based method can include synchronizing the crystal frequency to a presumed, accurate frequency of a controlling device to determine the second frequency offset. Both the first and second frequency offsets can be used to pull the crystal frequency. A synthesizer can also be pulled to fine tune a carrier frequency derived from the crystal frequency.