Abstract:
Several methods are disclosed for the generation of coherent short-wavelength electromagnetic radiation through optical nonlinear frequency mixing means. The invention involves several stages of efficient nonlinear frequency conversion to shift the output of high-power infra-red fiber-lasers into the vacuum ultraviolet (VUV). The described laser source architecture is designed around non-critically phase-matched (NCPM) sum-frequency mixing (SFM) interactions in the nonlinear crystal CLBO. The NCPM interaction is an optimum condition for bulk frequency conversion of cw radiation because it allows tight focusing of the input laser radiation without Poynting vector walk-off, thereby increasing the non-linear drive significantly. The sub-200-nm output wave is generated from SFM of a long-wave IR laser field and a short-wave UV laser field. The long-wave laser beam may be derived directly from a rare-earth-doped fiber laser, whereas the short-wavelength UV beam is provided as the fourth frequency harmonic of a second rare-earth-doped fiber laser system.
Abstract:
The present invention provides a methods and compositions for treating a host afflicted with a viral infection, particularly a Flaviviridae infection, including hepatitis C infection, comprising administering an effective antiviral amount of a derivative of andrographolide alone or in combination or alternation with another antiviral compound.
Abstract:
The present invention relates to a process for preparing tri-filler incorporated natural rubber master batch. The fillers used in the present invention are carbon black, silica and nano-clay (modified montmorillonite clay, Cloisite 93 A). The process of preparing fillers incorporated master batch involves preparation of the individual filler dispersions by mixing each filler with surfactants. Further fresh rubber latex is soap sensitized by mixing it with surfactant. The filler dispersions are added to the soap sensitized rubber latex slowly under stirring to form the master mix. Then the master mix is coagulated by the addition of acid to form coagulum. The coagulum is dewatered and dried to obtain filler incorporated natural rubber master batch.
Abstract:
An optical system for non-invasive cytometry of mammalian cells includes a light source, a cell positioner, an optical imager, an optical wavefront sensor and a computer. The light source produces an illuminating beam of spatially coherent radiation. The cell positioner sequentially moves a single cell from a population of multiple cells into a sub-aperture region of the illumination beam whose wavefront is perturbed in response to the physical structure of the single cell. An optical system relays a magnified image of the sub-aperture region containing the cell to an image plane. At the image plane a Shack-Hartmann wavefront sensor is positioned. Within the pupil of the wavefront sensor the local tilts of the wavefront in the sub-aperture region are measured and sent to a computer. Software calculates the Zernike coefficients corresponding to the aberration induced by the structure of each cell. Their Zernike signatures classify the cells into distinct types.