摘要:
Evaluation of a sample for the presence and qualitative nature of a microorganism can be performed in a single vessel by combining a natural abundance DNA sample with a sequencing mixture containing a primer pair, a thermally stable polymerase such as ThermoSequenase.TM. which incorporates dideoxynucleotides into an extending nucleic acid polymer at a rate which is no less than about 0.4 times the rate of incorporation of deoxynucleotides, nucleotide triphosphate feedstocks, and a chain terminating nucleotide triphosphate. The mixture is processed through multiple thermal cycles for annealing, extension and denaturation to produce a product mixture which is analyzed by electrophoresis.
摘要:
Sequencing of a selected region of a target nucleic acid polymer in a genomic DNA sample can be performed in a single vessel by combining the sample with a sequencing mixture containing a primer pair, a thermally stable polymerase such as Thermo Sequenase.TM. which incorporates dideoxynucleotides into an extending nucleic acid polymer at a rate which is no less than about 0.4 times the rate of incorporation of deoxynucleotides, nucleotide feedstocks, and a chain terminating nucleotide. The mixture is processed through multiple thermal cycles for annealing, extension and denaturation to produce a product mixture which is analyzed by electrophoresis.
摘要:
Amplification and sequencing of a selected region of a target nucleic acid polymer are be performed in a single vessel. The sample is added to an amplification mixture containing a thermally stable polymerase and nucleoside feedstocks. Chain terminating dideoxynucleosides are added either at the beginning of the amplification reaction or during the course of the amplification. A thermally stable polymerase which incorporates dideoxynucleotides into an extending oligonucleotide at a rate which is no less than about 0.4 times the rate of incorporation of deoxynucleosides can be used in the amplification mixture or added with the chain terminating nucleoside.
摘要:
Sequencing of a selected region of a target nucleic acid polymer in a natural abundance DNA sample can be performed in a single vessel by combining the sample with a sequencing mixture containing a primer pair, a thermally stable polymerase such as Thermo Sequenase™ which incorporates dideoxynucleotides into an extending nucleic acid polymer at a rate which is no less than about 0.4 times the rate of incorporation of deoxynucleotides, nucleotide feedstocks, and a chain terminating nucleotide. The reaction mixture also includes an unconventional nucleotide and an appropriate enzyme for degradation of nucleic acid polymers containing the unconventional nucleotide. The mixture is processed through multiple thermal cycles for annealing, extension and denaturation to produce a product mixture which is analyzed by electrophoresis.
摘要:
Sequencing of a selected region of a target nucleic acid polymer in a natural abundance DNA sample can be performed in a single vessel by combining the sample with a sequencing mixture containing a primer pair, a thermally stable polymerase such as Thermo Sequenase™ which incorporates dideoxynucleotides into an extending nucleic acid polymer at a rate which is no less than about 0.4 times the rate of incorporation of deoxynucleotides, nucleotide feedstocks, and a chain terminating nucleotide. The reaction mixture also includes an unconventional nucleotide and an appropriate enzyme for degradation of nucleic acid polymers containing the unconventional nucleotide. The mixture is processed through multiple thermal cycles for annealing, extension and denaturation to produce a product mixture which is analyzed by electrophoresis.
摘要:
A method is provided for simultaneously determining the positions of a selected nucleotide base in a target region of both strands of a denatured duplex nucleic acid polymer. The nucleic acid polymer is combined with a reactant mixture comprising first and second oligonucleotide primers, said primers binding to the sense and antisense strands, respectively, of the nucleic acid polymer at a location flanking the target region; a thermostable DNA polymerase; a chain-terminating nucleotide triphosphate complementary to the selected nucleotide base; and other reagents for synthesis of chain extension products to form a reaction mixture. This mixture is processed through a plurality of thermal cycles, each including at least a chain extension phase and a denaturation phase to produce chain extension products. These chain extension products are evaluated to determine the positions of the selected bases. The method of the invention differs from the prior art, because the first and second oligonucleotide primers are each labeled with different, spectroscopically-distinguishable fluorescent labels. The method therefore obtains information about both DNA strands simultaneously while providing improved sensitivity as a result of the non-linear increase in the amount of DNA which results from the production of additional templates molecules from unterminated fragments.
摘要:
A microelectrophoresis chip comprises a substrate in which there are formed one or more channels, one channel for each sample to be evaluated. The channels extend for the length of the chip, a distance of generally around 1 cm, and are about 1 to 10 &mgr;m wide and 1 to 10 &mgr;m in depth. The channels are filled with a homogeneous separation matrix which acts as an obstacle to the electrophoretic migration of the charged molecules. Microelectrodes disposed in the channels are used to induce an electric field within the homogeneous separation medium. When a voltage is applied across two or more of the microelectrodes, the charged molecules are induced to move and separate according to the electric field density, the type of solvent film, and the charge, shape and size of the charged molecule. The chip may further comprise detectors, such as light polarization detectors, fluorescence emission detectors, biosensors, electrochemical sensors or other microcomponents which may include sites for enzymatic or chemical manipulation of the moved or separated charged molecules.
摘要:
Electrochemical test cells are made with precision and accuracy by adhering an electrically resistive sheet having a bound opening to a first electrically conductive sheet. A notching opening is then punched through the electrically resistive sheet and the first electrically conductive sheet. The notching opening intersects the first bound opening in the electrically resistive sheet, and transforms the first bound opening into a notch in the electrically resistive sheet. A second electrically conductive sheet is punched to have a notching opening corresponding to that of first electrically conductive sheet, and this is adhered to the other side of the electrically resistive sheet such that the notching openings are aligned. This structure is cleaved from surrounding material to form an electrochemical cell that has a sample space for receiving a sample defined by the first and second conductive sheets and the notch in the electrically resistive sheet.
摘要:
Electrochemical test cells are made with precision and accuracy by adhering an electrically resistive sheet having a bound opening to a first electrically conductive sheet. A notching opening is then punched through the electrically resistive sheet and the first electrically conductive sheet. The notching opening intersects the first bound opening in the electrically resistive sheet, and transforms the first bound opening into a notch in the electrically resistive sheet. A second electrically conductive sheet is punched to have a notching opening corresponding to that of first electrically conductive sheet, and this is adhered to the other side of the electrically resistive sheet such that the notching openings are aligned. This structure is cleaved from surrounding material to form an electrochemical cell that has a sample space for receiving a sample defined by the first and second conductive sheets and the notch in the electrically resistive sheet.
摘要:
A system in the form of distributed data-processing and communications hardware components is used to enhance patient compliance with instructions for the taking of medications. The system includes a central server and a plurality of remote stations disposed at medication points-of-supply in communication for data transmission to and from the central server. Upon dispensing of a medication to a patient, the remote station transmits information to the central server and the central server receives and stores the information. The information includes at least a telephonic communication address for the patient, the nature of the medication dispensed and the amount and instructed frequency of taking the medication. The central server transmits an initial message to the patient, for example to a cellular telephone, within a pre-determined period of time following initial receipt of the information from the remote station; and subsequent messages at time intervals determined by the instructed frequency of taking the medication. Responses from the patient may be logged to confirm taking of the medication.